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1. Use the minimal counterexample principle to prove that for any integer n > 17, there exist
integers in ≥ 0 and jn ≥ 0, such that n = in × 4 + jn × 7.

Proof. If n = in × 4 + jn × 7, in ≥ 0, jn ≥ 0 is not true for every n > 17, then there are
values of n for which n = in× 4 + jn× 7, in ≥ 0, jn ≥ 0 is false, and there must be a smallest
such value, say n = k. Since 18 = 1× 4 + 2× 7, which is true for this proposition. Then we
have k ≥ 19, and k − 1 ≥ 18.

Since k is the smallest value for which k = ik × 4 + jk × 7, ik ≥ 0, jk ≥ 0 is false, then
k − 1 = ik−1 × 4 + jk−1 × 7, ik−1 ≥ 0 and jk−1 ≥ 0 is true.

However, we have
k = k − 1 + 1

= ik−1 × 4 + jk−1 × 7 + 2× 4− 1× 7

= (ik−1 + 2)× 4 + (jk−1 − 1)× 7

Since ik−1 ≥ 0, then ik−1 + 2 ≥ 0. As for jk−1, if jk−1>0, then k = ik × 4 + jk × 7 is true and
ik = ik−1 + 2, jk = jk−1 − 1. In the case of jk−1 = 0, we have found that k − 1 ≥ 18. Since
jk−1 = 0, ik−1 ≥ 5. We have

k = k − 1 + 1

= ik−1 × 4 + 1

= (ik−1 − 5)× 4 + 4× 5 + 1

= (ik−1 − 5)× 4 + 3× 7

As we can see, k = ik× 4 + jk× 7, ik ≥ 0, jk ≥ 0 is true if k− 1 = ik−1× 4 + jk−1× 7, ik−1 ≥ 0
and jk−1 ≥ 0 is true. We have derived a contradiction, which allows us to conclude that our
original assumption is false. Then we have proofed that for any integer n > 17, there exist
integers in ≥ 0 and jn ≥ 0, such that n = in × 4 + jn × 7.

2. Suppose a0 = 1, a1 = 2, a2 = 3, and ak = ak−1 + ak−2 + ak−3 for k ≥ 3. Use the strong
principle of mathematical induction to prove that an ≤ 2n for any integer n ≥ 0.

Proof. Induction hypothesis. For k ≥ 0 and 0 ≤ n ≤ k, an ≤ 2n is true.

Proof of induction step. We need to prove ak+1 ≤ 2k+1 is true.

If k<3, since a0 = 1 ≤ 20, a1 = 2 ≤ 21 and a2 = 3 ≤ 22, which means that induction
hypothesis is true in this case, then we can prove that a3 = 1 + 2 + 3 = 6 ≤ 23 is true. We
can prove that ak+1 ≤ 2k+1 is true when k<3.

If k ≥ 3, according to induction hypothesis, we have

ak+1 = ak + ak−1 + ak−2

≤ 2k + ak−1 + ak−2 + ak−3 − ak−3

= 2k + ak − ak−3

≤ 2k + 2k − ak−3

= 2k+1 − ak−3

≤ 2k+1
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Obviously, an ≥ 0, n ≥ 0, and an ≤ 2n, 0 ≤ n ≤ k then we can prove that ak+1 ≤ 2k+1. Thus
we can prove that an ≤ 2n for any integer n ≥ 0.

3. For Algorithm 1 and Algorithm 2 shown below, what is the time complexity these two Algo-
rithms? Express in O, Ω and Θ notation.

Algorithm 1: COUNT1

Input: n
1 count← 0;
2 for i← 1 to n do
3 j ← i;
4 while j 6= 0 do
5 j ← j − (j and (j xor (j − 1)));
6 count← count+ 1;

Algorithm 2: COUNT2

Input: n
1 count← 0;
2 if n is even then
3 for i← 1 to n do
4 j ← i;
5 while j 6= 0 do
6 j ←

j − (j and (j xor (j − 1)));
7 count← count+ 1;

8 else
9 j ← bn/2c;

10 while j ≥ 1 do
11 count← count+ 1;
12 j ← bj/2c;

Solution. Algorithm 1. For j, we have:

j =

blog 2jc∑
k=0

ak × 1 (1)

In eq.1, ak can be 0 or 1, while ablog 2kc = 1. Since we can express j as eq.1, we have:

j − (j and (j xor (j − 1))) = j − (j mod 2l+1) (2)

In eq.2, al = 1 and for each m<l, am = 0. As we can see, the times of while loop’s execution
equals the number of ak, which ak = 1 in eq.1. For each j ≤ i, the number of ak, which ak = 1
0<N(j) ≤ blog 2jc.
The time complexity can be Expressed in O(n× log 2n), Ω(n× log 2n) and Θ(n× log 2n).

Algorithm 2.

If n is even the time complexity is same as Algorithm 1. However, if n is odd, the time
complexity is Θ(log 2n).

Above all, the time complexity is Ω(log 2n) and O(n× log 2n).
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