
CS2308-Algorithm@SJTU Group Project Instructor: Xiaofeng Gao

Resource Scheduling Problem in Hadoop
Project for Algorithm and Complexity Course

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

Abstract. The course project focuses on resource scheduling problem in Hadoop. This document
introduce the background and two versions of resource scheduling on single or multiple hosts. Also,
it lists all the tasks and requirements for each student group. Please read this document carefully
and complete the corresponding tasks.
Keywords: Distributed Computing System, Resource Scheduling, Hadoop

1 Background and Motivation
Hadoop is an open-source software framework for storing data and running applications on clusters

of commodity hardware. In Hadoop, the data of a running job can be divided into several data blocks,
stored on different hosts. Each host has one or multiple CPU cores to process data blocks. In this project,
our goal is to achieve effective parallel computing. That is to say, given a set of jobs with massive data,
we need to design a resource scheduling algorithm to minimize the overall executing time of all jobs.

2 A Simplified Version with Single Host
First, let us consider a simple case with a single host storing all data blocks. Please read the assump-

tions, specifications, symbol notations, constraints, and explanations in Subsection 2.1 carefully and then
complete the tasks mentioned in Subsection 2.2.

2.1 Problem Formulation and Explanation
To simplify the problem, we give the following assumptions and specifications.

1. There are n jobs that need to be processed by a single host, which has m CPU cores of the same
computing capability. Let J be the set of jobs, and C be the set of cores for the host, where J =
{job0, job1, · · · , jobn−1}, and C = {c0, c1, · · · , cm−1} (The labels of variables start from 0 because
we use C/C++ source codes in the following tasks).

2. We treat data block as the smallest indivisible unit in our project, while a job can be divided into
multiple data blocks with different sizes for storage and computing. Assume jobi is split into ni data
blocks, denoted by Bi = {bi0, bi1, · · · , bini−1}. For block bik of jobi, define its size as size(bik).

3. Assume jobi is assigned to ei cores for processing, and naturally ei ≤ ni. That is to say, one core
can process multiple data blocks of one job sequentially. Let Bi

j ⊆ Bi denote the set of data blocks
of jobi allocated to core cj , and Bi

j ∩Bi
j′ = ∅ if j ̸= j′ (they should be disjointed).

4. For jobi, the processing speed of its data blocks is si when jobi is assigned to a single core. However,
when multiple cores process jobi in parallel, the computing speed of each core all decays because of
some complicated interactions. We formulate such speed decay effect caused by multi-core compu-
tation as a coefficient function g(·) with respect to core number ei, as described in Equation (1):

g(ei) = 1.00− α · (ei − 1), for 1 ≤ ei ≤ 10, (1)

where α is a decay factor satisfying 0 < α < 1 , and usually the number of cores for processing a
single job is no more than 10. Then, the speed of each core can be rewritten as si · g(ei) for jobi
respectively. (Note that although the speed of each core decays, the overall processing time using
ei cores in parallel should be faster than that of using just one core. Otherwise we do not need to
implement parallel computing. Thus the setting of α should guarantee this principle.)

Correspondingly, the processing time tpij of core cj for jobi can be expressed as Equation (2):

tpij =

∑
bik∈Bi

j
size(bik)

si · g(ei)
. (2)

Page 1 of 7

CS2308-Algorithm@SJTU Group Project Instructor: Xiaofeng Gao

5. For consistency issues, if we assign a job to multiple cores, all cores must start processing data blocks
at the same time. If one or several cores are occupied by other affairs, then all other cores should
wait for a synchronous start, and keep idle. It means that the processing of jobi for every core should
all start at time ti, whereas their processing duration might be different. Let tf i

j be the finishing
time of core cj for jobi, which is calculated by Equation (3):

tf i
j = ti + tpij . (3)

However, the occupied cores of jobi are released synchronously when the computing process of the
last data block is finished. Thus the finishing time tf(jobi) of jobi is given as Equation (4):

tf(jobi) = max
cj

tf i
j , for cj ∈ C. (4)

Please keep these assumptions and specifications in mind and finish the following tasks.

2.2 Task 1: Resource Scheduling for Single Host

Based on the descriptions in Subsection 2.1, your work is to design a resource scheduling algorithm
to minimize the overall finishing time of all jobs, whose objective function is shown as:

minmax
jobi

tf(jobi), for jobi ∈ J.

Figure 1 illustrates a toy example of scheduling resources among three jobs job0, job1, job2 on a
single host, which has four cores c0, c1, c2, c3. All blocks of job0, job1, and job2 are stored on this host,
with different sizes measured by megabyte (MB). The goal is to find a scheduling strategy assigning data
blocks to suitable cores so that the overall finishing time of three jobs is minimized.

job0

job1

Host hc0 c1 c2 c3

job2

10MB

b0b0b0b0

20MB

b1b0b1b0

16MB

b2b0b2b0

9MB

b0b1b0b1

16MB
b1b1b1b1

10MB

b0b2b0b2

20MB 15MB
b2b2b2b2 b3b2b3b2

6MB

b1b2b1b2

10MB

b0b0b0b0

20MB

b1b0b1b0

16MB

b2b0b2b0

10MB

b0b0

20MB

b1b0

16MB

b2b0

9MB

b0b1b0b1

16MB
b1b1b1b1

9MB

b0b1

16MB
b1b1

10MB

b0b2b0b2

20MB 15MB
b2b2b2b2 b3b2b3b2

6MB

b1b2b1b2

10MB

b0b2

20MB 15MB
b2b2 b3b2

6MB

b1b2

Fig. 1. A toy example of scheduling re-
sources for a single host

time/s

c0 is idle

c2 is idle

c3

c2

c1

c0

c1 is

idle

c3 is

idle

c1 is idle

c0 is idle

t=2.128s

b0b0b0b0

t=2.128s

b0b0

t=3.404s

b2b0b2b0

t=3.404s

b2b0

t=1.8s

b0b1b0b1

t=1.8s

b0b1

t=3.2s

b1b1b1b1

t=3.2s

b1b1

time consumption for

job1 = 5 s

Time consumption for

 job0 = 4.255 s

t=4.396s

b2b2b2b2

t=4.396s

b2b2

t=1.319s

b1b2b1b2

t=1.319s

b1b2

t=3.297s

b3b2b3b2

t=3.297s

b3b2

time consumption for

job2 = 4.396 s

5s 9.396s

t=4.255s

b1b0b1b0

t=4.255s

b1b0

t=2.198s

b0b2b0b2

t=2.198s

b0b2

Fig. 2. Time consumption of a feasible solution for the example in
Figure 1

Remark. Assume the sizes of three blocks of job0 are respectively size(b00) = 10 MB, size(b01) = 20
MB and size(b02) = 16 MB, while those of job1 are size(b10) = 9 MB and size(b11) = 16 MB. The size
of each block in job2 is size(b20) = 10 MB, size(b21) = 6 MB, size(b22) = 20 MB and size(b23) = 15 MB,
respectively. Moreover, suppose the computing speed is si = 5 MB/s for i = 0, 1, 2, and α = 0.03 to
compute the decay coefficient g(·) in Equation (1).

Here we provide a feasible solution (as shown in Figure 2) for the above setting in Figure 1, in which
blocks of job0 are assigned to three cores c0, c1, c2, and blocks of job1 are assigned to the last core c3.

Page 2 of 7

CS2308-Algorithm@SJTU Group Project Instructor: Xiaofeng Gao

Now, we can compute the processing time of core c0, c1, c2 for job0 as Equation (5) respectively: tp00 = size(b00)/(s0 · g(e0)) = 10/(5× (1.00− 0.03× (3− 1))) = 2.128s,
tp01 = size(b01)/(s0 · g(e0)) = 20/4.7 = 4.255s,
tp02 = size(b02)/(s0 · g(e0)) = 16/4.7 = 3.404s.

(5)

Moreover, the processing of job0 starts at 0s, so the finishing time of job0 is

tf(job0) = 0 +max{tp00, tp01, tp02} = max{2.128, 4.255, 3.404} = 4.255s.

The processing time of blocks b10 and b11 with the single core c3 is t10 = 9/5 = 1.8s and t11 = 16/5 = 3.2s,
respectively. Then the finishing time of job1 is tf(job1) = 1.8 + 3.2 = 5s.

We assign job2 to four cores, each of which should start after job1 releases the occupied core. Obvi-
ously, the processing of job2 starts at 5s. The processing time of each block of job2 is:

t20 = size(b20)/(s2 · g(e2)) = 10/(5× (1.00− 0.03× (4− 1))) = 2.198s,
t21 = size(b21)/(s2 · g(e2)) = 6/4.55 = 1.319s,
t22 = size(b22)/(s2 · g(e2)) = 20/4.55 = 4.396s,
t23 = size(b23)/(s2 · g(e2)) = 15/4.55 = 3.297s.

Then we can get that the finishing time of job2 as

tf(job2) = 5 +max{2.198, 1.319, 4.396, 3.297} = 9.396s.

Thus, the overall finishing time of the three jobs is

max{tf(job0), tf(job1), tf(job2)} = 9.396s.

It is observed that for a multi-core job, its time consumption is determined by the last completed block,
while for the whole system, the total finishing time is decided by the last finished job. However, Figure 2
is just a feasible solution and not necessarily optimal, since cores c0, c1, c2, and c3 are all idle for a while
during the whole process, which is a waste of resources.

Based on the above explanations and examples, please finish the following tasks:

1. Formalize the resource scheduling problem for a single host as a programming pattern with objective
function and constraints. You cannot rename the variables that have been defined in the project,
whereas you are free to introduce other new variables, and please define your variables clearly.

2. Please design an algorithm to solve this problem efficiently. First, describe your idea in detail, and
then provide the corresponding pseudocode. Also, please discuss the time complexity of your design.

3. Verify your algorithm using the attached test data in “task1 case1.txt” under input file folder and
save your result in the .txt file, named as “task1 case1 TeamNumber.txt” (e.g., task1 case1 06.txt).
The input/output format is fixed in the reference codes. Optionally, visualize your result while the
visual format is not limited. For example, you can plot a figure from the perspective of cores on the
host. The test data and reference codes are also released on GitHub: Resource Scheduling Problem.

3 A Comprehensive Version among Multiple Hosts

In this section, we consider a more complex situation, where we need to schedule resources among
multiple hosts. Now the data transmission process between pairwise hosts should be taken into consid-
eration. The data blocks of jobs could be initially stored on different hosts, but one data block can only
be initially stored on one specified host. If data block bik and its assigned computing core cj are not on
the same host, bik will be transmitted to the host containing cj (Here we assume that the bandwidth
between hosts is sufficient for data transmission). The transmission process will influence the finishing
time of jobs, further affecting the resource scheduling process.

Page 3 of 7

https://github.com/shiwanghua/SharedFiles/tree/Project-CodeDemo

CS2308-Algorithm@SJTU Group Project Instructor: Xiaofeng Gao

3.1 Problem Formulation and Explanation

Besides the descriptions and specifications of Task 1, here are more notations and explanations.

1. Assume we have q hosts H = {h0, h1, · · · , hq−1}, and host hl has ml cores (may have different number
of cores). Let Cl be the set of cores on host hl, Cl = {cl0, cl1, · · · , clml−1}. Easy to see,

∑q−1
l=0 ml = m.

2. If core clj on host hl computes a data block bik of jobi which is initially stored on another host h′
l,

then bik needs to be transmitted from h′
l to hl at a transmission speed st (this speed is fixed in our

system). An example is shown in Figure 3, where hosts h0 and h1 both have two cores, and many
jobs need to be processed. Core c10 on host h1 is assigned to compute the data block b12 of job1, which
is initially stored on host h0. In this case, b12 needs to be transmitted from h0 to h1 at a transmission
speed st first, and then be computed by c10. Whenever b12 starts transmission, other cores can work
in parallel to process job1.

b1b1b1b1

job1

Host h0

job0

b0b1b0b1 b2b2

b0b0b0b0 b2b0b2b0b1b0b1b0b1b0 b3b0b3b0b3b0

b1b0b1b0b1b0
b3b0b3b0b3b0

b1b1b1b1b1b1 b1b1

b2b2b1b1b1b1b1b1 b1b1

c0c0c0c0
c1c0c1c0 Host h1c0c1c0c1 c1c1c1c1

b0b0b0b0 b2b0b2b0

st

st

b0b1b0b1b0b1

time/s

idle

transmission
from h0 to h1

working for other jobs

b0b1b0b1

time consumption for job1

c0c0c0c0

c1c0c1c0

c0c1c0c1

c1c1c1c1

b2b1b2b1b2b1

idle

{

{

h0

h1

……

…… ……

……

……

Fig. 3. An example of data transmission between 2 hosts

3. Any core cannot call for data transmission when it is calculating other data blocks. Likewise, a core
cannot start computing any data block until this block is ready, i.e. initially on the same host or
transmitted from a remote host to the local host. For example, the core c10 on host h1 must wait for
the data transmission of block b12 from host h0 to h1, and then start computation. What is more, the
transmission time of b12 from h0 to h1 affects the finishing time of job0, further affecting the finishing
time of the whole system.

For core clj on host hl, let B̃i
lj be the set of data blocks of jobi allocated to clj but not initially

stored on host hl. All the data blocks in B̃i
lj need to be transmitted to host hl before computing.

Let Bi
lj be the set of data blocks of jobi allocated to core clj . Then, the processing time tpilj of core

clj for jobi can be reformulated as Equation (6):

tpilj =

∑
bik∈B̃i

lj
size(bik)

st
+

∑
bik∈Bi

lj
size(bik)

si · g(ei)
. (6)

4. If the processing of jobi starts at time ti, then the finishing time of core clj for jobi is

tf i
lj = ti + tpilj .

Then the finishing time tf(jobi) of jobi is formulated as:

tf(jobi) = max
clj

tf i
lj , for clj ∈ C.

Please keep these assumptions and specifications in mind and finish the following tasks.

Page 4 of 7

CS2308-Algorithm@SJTU Group Project Instructor: Xiaofeng Gao

3.2 Task 2: Resource Scheduling among Multiple Hosts
Similarly, the aim of Task 2 is to design a resource scheduling algorithm among multiple hosts to

minimize the overall finishing time, which is formulated as:

minmax
jobi

tf(jobi), for jobi ∈ J.

Figure 4 shows a toy example of scheduling resources among 3 hosts. We have 4 different jobs, each
of which consists of blocks with different sizes. For example, job0 has three blocks, b01, b01, and b02, stored
on host h0. Other jobs are stored on different hosts. These data blocks are assigned to available cores on
the three hosts, each with two cores. Then this scheduling should consider the data transmission process
if the data block and its allocated core are not on the same host. Our goal is to find a scheduling strategy
to allocate data blocks to appropriate cores so that the overall finishing time of four jobs is minimized.

Host h0c0c0c0c0
c1c0c1c0 Host h1c0c1c0c1 c1c1c1c1

st

st

job0

job1

job2

10MB

b0b0b0b0

20MB

b1b0b1b0

15MB

b2b0b2b0

12MB

b0b1b0b1

10MB

b1b1b1b1

18MB

b0b2b0b2

20MB
b1b

2
b1b

2

b2b1b2b1

24MB

job3 10MB
b0b3b0b3

16MB 30MB
b2b3b2b3 b3b3b3b3

18MB
b1b3b1b3

Host h2c0c2c0c2
c1c2c1c2

10MB

b0b0b0b0

20MB

b1b0b1b0

15MB

b2b0b2b0

12MB

b0b1b0b1

10MB

b1b1b1b1

b2b1b2b1

24MB

18MB

b0b2b0b2

20MB

b1b2b1b2

10MB
b0b3b0b3

18MB
b1b3b1b3

16MB 30MB
b2b3b2b3 b3b3b3b3

st st st st

Transmission speed st = 40 MB/s

Computing speed for different jobs:

s0 = s1 = 10 MB/s, s2 = s3 = 12 MB/s

Fig. 4. A toy example of scheduling resources among 3 hosts

Remark. Assume the sizes of three blocks of job0 are respectively set as size(b00) = 10 MB, size(b01) =
20 MB and size(b02) = 15 MB, while those of other jobs are listed in the left hand of Figure 4. Set decay
factor α = 0.1, and then the computing decaying coefficient is g(ei) = 1− 0.1× (ei − 1). Besides, we set
the transmission speed as st = 40 MB/s. Assume that job0 and job1 have the same computing speed,
which is s0 = s1 = 10 MB/s. Similarly, the computing speed of job2 and job3 is s2 = s3 = 12 MB/s.
Under the above settings, we give a feasible solution for the example in Figure 4, as shown in Figure 5.

In the initialization phase, we know that blocks of job0 are on the host h0, blocks of job1 are on h1,
blocks of job2 and job3 are on h2. Thus we choose to compute job0, job1, and job2 on their own local
host, each with two cores.

Firstly, the calculation of time consumption is similar to the example of Task 1. For instance, the
time consumption of block b20, also the processing time of core c20 for job2, is

tp221 =
size(b20)

s2 × g(e2)
=

18

12× g(2)
=

18

12× 0.9
= 1.667s. (7)

As shown in Equation (7), we can compute the time consumption of the rest blocks in job0, job1
and job2. One job can be allocated to multiple cores on different hosts and each block of this job can
be computed by only one core. We allocate the data blocks of job2 to cores c20 and c21 for computing. In
detail, c20 computes b20 and c21 computes b21. Cores c20 and c21 must be released simultaneously when the
computing of b21 is finished. Thus, the finishing time of job2 in this stage is 1.852s, while c20 and c21 stay
idle to wait for new task allocation.

In the same way, job0, job1, and job2 have been allocated to certain cores to finish computing. As
shown in Figure 5, 4 cores on h1 and h2 stay in idle state after finishing the computation of c11. We
consider that allocating job3 to 4 cores on h1 and h2 is feasible.

Page 5 of 7

CS2308-Algorithm@SJTU Group Project Instructor: Xiaofeng Gao

idle
t=1.333s

time/s

idle
id

le

idle

idle

t=1.111s

b0b0

t=2.667s

Time consumption for

job1 = 2.667 s

Time consumption for

 job0 = 2.778 s

t=1.905s
ttrans=0.4s

b2b3

Time consumption for

job3 = 3.571 s

6.238s

t=2.222s

b1b0

h0

h1

idle

idle

t=1.667s

t=1.852s

b1b2

t=3.571s

t=2.143s{h2

{

{
c0c0

c1c0

c0c1

c1c1

c0c2

c1c2

t=1.667s

b2b0

b0b1

t=1.111s

b1b1

b2b1

b0b2

idle

b3b3

b1b3

t=1.19s
ttrans=0.25s

b0b3

tra
n
sm

it
tra

n
sm

it

Time consumption for
job2 = 1.832 s

Fig. 5. Time consumption of a feasible solution for the example in Figure 4.

When the system allocates job3 to 4 cores and starts processing it, it is necessary to transmit the
blocks of job3 from host h2 to host h1. According to the actual condition, the time of job computing
starting is the time of transmission starting. For instance, 4 blocks of job3 are allocated to 4 cores for
computing. We can compute b31 and b33 at local host directly, rather transmit b30 and b32 to host h1. The
transmission time for b30 can be calculated as size(b30)

st
= 10

40 = 0.25s.
Consequently, the time consumption of b30, also the processing time of core c11 for job3, could be

computed as Equation (8).

tp311 = 0.25 +
size(b20)

s3 × g(e3)
= 0.25 +

10

12× g(4)
= 0.25 +

10

12× 0.7
= 1.440s. (8)

It is the same as the above that some cores could be in idle state when finishing block computing.
Thus, the processing time of job3 in this stage is the time consumption of b33, which is 3.571s. The whole
time consumption of this example is the latest finishing time of all jobs, which is calculated to be 6.238s.
Figure 5 shows the time consumption of this solution and the red dotted box expresses the idle state of
cores during the scheduling process.

Obviously, the time consumption of this solution could utilize resources as much as possible, which
means that the data transmission can affect the final overall finishing time. However, what is remarkable
is that the solution given in Figure 5 may not be optimal for the example in Figure 4. Because idle state
indicates the resource waste and this solution can still be optimized.

Based on the above discussions and examples, please finish the following tasks:
1. Formalize the resource scheduling problem among multiple hosts as a programming pattern with

objective function and constraints. Justify whether it is an NP-Complete problem.
2. Design an algorithm to solve this problem. First, describe your idea in detail, and then provide the

corresponding pseudo code. Also, please discuss the time complexity of your design.
3. Verify your algorithm using test data “task2 case1.txt” in input file folder and save your result in

the .txt file, named as “task2 case1 TeamNumber.txt” (e.g., “task2 case1 06.txt”). The input/output
format is fixed in the reference codes. Optionally, visualize your result in an unlimited format. For
example, you can plot a figure from the perspective of cores on the host. The test data and reference
codes are also released on GitHub: Resource Scheduling Problem.

Page 6 of 7

https://github.com/shiwanghua/SharedFiles/tree/Project-CodeDemo

CS2308-Algorithm@SJTU Group Project Instructor: Xiaofeng Gao

4 Report Requirements

You need to submit a report for this project, with the following requirements:

1. Your report should include the title, the author names, IDs, email addresses, the page header, the
page numbers, your results and discussions for the tasks, figures for your simulations, tables for
discussions and comparisons, with the corresponding figure titles and table titles.

2. Your report should be in English only, with a clear structure, divided by sections, and may contain
organizational architecture such as items, definitions, or discussions.

3. Please include Reference section and Acknowledgment section. You may also include your feelings,
suggestions, and comments in the acknowledgment section.

4. Please define your variables clearly and add them into the symbol table in Appendix.
5. Please create a folder named “Project-TeamNumber”� which contains related materials such as report

“Project-TeamNumber.pdf”, latex source “Project-TeamNumber.tex”, the executable file “Project-
TeamNumber.exe” (if you have), the data output folder “Project-Outputs-TeamNumber”, the fig-
ure folder “Project-Figures-TeamNumber”, and other code file folder “Project-Codes-TeamNumber”.
Then compress the home folder “Project-TeamNumber” into a “Project-TeamNumber.zip” package.
Note that TeamNumber should be two-digit number, e.g., “Project-06.zip” conforms to the rule.

Acknowledgements

This problem is motivated from a real-world cloud service corporation. It is formulated by Prof.
Xiaofeng Gao (gao-xf@cs.sjtu.edu.cn) from Department of Computer Science and Engineering at Shanghai
Jiao Tong University. Yue Ma scribed and modified the project. Yangyang Bao provided the example in
Task 1. Zhen Sun provided the example in Task 2. Wanghua Shi provided the test data and source code.
Jiale Zhang, Tianyao Shi helped on proofreading and provided many suggestions.

Appendix

Table 1. Symbols and Definitions

Symbols Definitions
n The number of jobs
m The number of cores
q The number of hosts

jobi, J jobi is the i-th job. The job set is J = {job0, · · · , jobn−1}.
hl, H hl is the l-th host. The host set is H = {h0, · · · , hq−1}.
ml The number of cores on host hl

clj , Cl clj is the j-th core on host hl. Cl is the set of cores on host hl.
C The set of cores. C = {c0, · · · , cm−1} for single-host. C = ∪q−1

l=0 Cl for multi-host.
bik The block of jobi whose id is k
Bi

j The set of data blocks of jobi allocated to core cj
Bi The set of data blocks of jobi
Bi

lj The set of data blocks of jobi allocated to core clj
B̃i

lj The set of data blocks of jobi allocated to core clj but not initially stored on hl

size(·) The size function of data block
g(·) The computing decaying coefficient caused by multi-core effect
si The computing speed of jobi by a single core
st The transmission speed of data
ei The number of cores processing jobi
ti The time to start processing jobi

tpij , tf i
j The processing time / finishing time of core cj for jobi

tpilj , tf i
lj The processing time / finishing time of core clj for jobi

tf(jobi) The finishing time of jobi

Page 7 of 7

	Resource Scheduling Problem in Hadoop

