Proof

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.Chin

October 31, 2016
(1) Formal Description

- Definition
- CategoriesProof Techniques
- Proof by Construction
- Proof by Contrapositive
- Proof by Cases
(3) Proof by Induction
- Mathematical Induction
- Minimal Counterexample Principle
- The Strong Principle of Mathematical Induction
- Peano Axioms
- Proof by Construction
- Proof by Contrapositive
- Proof by Contradiction
- Proof by Counterexample
- Proof by Cases
- Proof by Mathematical Induction
- The Principle of Mathematical Induction
- Minimal Counterexample Principle
- The Strong Principle of Mathematical Induction

Example: For any integers a and b, if a and b are odd, then $a b$ is odd.
Proof: Since a and b are odd, there exist integers x and y such that $a=2 x+1, b=2 y+1$. We wish to show that there is an integer z so that $a b=2 z+1$. Let us therefore consider $a b$.

$$
\begin{aligned}
a b & =(2 x+1)(2 y+1) \\
& =4 x y+2 x+2 y+1 \\
& =2(2 x y+x+y)+1
\end{aligned}
$$

Thus if we let $z=2 x y+x+y$, then $a b=2 z+1$, which implies that $a b$ is odd.
Formal Description
Proof Techniques

Proof by Induction \quad| Proof by Construction |
| :---: |
| Proof by Contrapositive |
| Proof by Cases |

Example: For any sets A, B, and C, if $A \cap B=\emptyset$ and $C \subseteq B$, then $A \cap C=\emptyset$.

Proof: Assume $A \cap B=\emptyset, C \subseteq B$, and $A \cap C \neq \emptyset$.
Then there exists x with $x \in A \cap C$, so that $x \in A$ and $x \in C$.
Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.
Therefore $x \in A \cap B$, which contradicts the assumption that $A \cap B=\emptyset$.

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j=n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.
Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$.
If it is not true that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i>\sqrt{n}$ and $j>\sqrt{n}$.
Since $j>\sqrt{n} \geq 0$, we have

$$
i>\sqrt{n} \Rightarrow i \times j>\sqrt{n} \times j>\sqrt{n} \times \sqrt{n}=n .
$$

It follows that $i \times j \neq n$. The original statement is true.

Formal Description Proof Techniques Proof by Induction	Proof by Construction Proof by Contrapositive Proof by Cases

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3 n^{2}+n+14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: n is even and n is odd. Case 1. n is even. Let $n=2 k$, where $k \in \mathbb{N}$. Then

$$
\begin{aligned}
3 n^{2}+n+14 & =3(2 k)^{2}+2 k+14 \\
& =12 k^{2}+2 k+14 \\
& =2\left(6 k^{2}+k+7\right)
\end{aligned}
$$

Since $6 k^{2}+k+7$ is an integer, $3 n^{2}+n+14$ is even if n is even.

Case 2. n is odd. Let $n=2 k+1$, where $k \in \mathbb{N}$. Then

$$
\begin{aligned}
3 n^{2}+n+14 & =3(2 k+1)^{2}+(2 k+1)+14 \\
& =3\left(4 k^{2}+4 k+1\right)+(2 k+1)+14 \\
& =12 k^{2}+12 k+3+2 k+1+14 \\
& =12 k^{2}+14 k+18 \\
& =2\left(6 k^{2}+7 k+9\right)
\end{aligned}
$$

Since $6 k^{2}+7 k+9$ is an integer, $3 n^{2}+n+14$ is even if n is odd.
Since in both cases $3 n^{2}+n+14$ is even, it follows that if $n \in \mathbb{N}$, then $3 n^{2}+n+14$ is even.

CS101-Introduction To Computer Science@SJTU	U Xiaofeng Gao	Slide04-Proof	14/28
	Formal Description Proof Techniques Proof by Induction	Mathematical Induction Minimal Counterexample Principle The Strong Principle of Mathematical Induction Peano Axioms	
An Example for Mathematical Induction			

Example: Let $P(n)$ be the statement $\sum_{i=0}^{n} i=n(n+1) / 2$. Prove that $P(n)$ is true for every $n \geq 0$.

Proof: We prove $P(n)$ is true for $n \geq 0$ by induction.
Basis step. $P(0)$ is $0=0(0+1) / 2$, and it is obviously true.
Induction Hypothesis. Assume $P(k)$ is true for some $k \geq 0$. Then $0+1+2+\cdots+k=k(k+1) / 2$.

Proof of Induction Step. Now let us prove that $P(k+1)$ is true.

$$
\begin{aligned}
0+1+2+\cdots+k+(k+1) & =k(k+1) / 2+(k+1) \\
& =(k+1)(k / 2+1) \\
& =(k+1)(k+2) / 2
\end{aligned}
$$

Suppose $P(n)$ is a statement involving an integer n. Then to prove that $P(n)$ is true for every $n \geq n_{0}$, it is sufficient to show these two things:

- $P\left(n_{0}\right)$ is true.
- For any $k \geq n_{0}$, if $P(k)$ is true, then $P(k+1)$ is true.

CS101-Introduction To Computer Science@SJTU	Xiaofeng Gao	Slide04-Proof	16/28
	Formal Description Proof Techniques Proof by Induction	Mathematical I Minimal Count The Strong Prin Peano Axioms	
The Minimal Counterexample Principle			

Example: Prove $\forall n \in \mathbb{N}, 5^{n}-2^{n}$ is divisible by 3 .
Proof: If $P(n)=5^{n}-2^{n}$ is not true for every $n \geq 0$, then there are values of n for which $P(n)$ is false, and there must be a smallest such value, say $n=k$.
Since $P(0)=5^{0}-2^{0}=0$, which is divisible by 3 , we have $k \geq 1$, and $k-1 \geq 0$.
Since k is the smallest value for which $P(k)$ false, $P(k-1)$ is true.
Thus $5^{k-1}-2^{k-1}$ is a multiple of 3 , say $3 j$.

However, we have

$$
\begin{aligned}
5^{k}-2^{k} & =5 \times 5^{k-1}-2 \times 2^{k-1} \\
& =5 \times\left(5^{k-1}-2^{k-1}\right)+3 \times 2^{k-1} \\
& =5 \times 3 j+3 \times 2^{k-1}
\end{aligned}
$$

This expression is divisible by 3 . We have derived a contradiction, which allows us to conclude that our original assumption is false.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.
Proof: Define $P(n)$ be the statement that " n is either prime or the product of two or more primes". We will try to prove that $P(n)$ is true for every $n \geq 2$.

Basis step. $P(2)$ is true, since 2 is a prime. \checkmark
Induction hypothesis. $P(k)$ for $k \geq 2$. (as usual process)
Proof of induction step. Let's prove $P(k+1)$.
If $P(k+1)$ is prime, \checkmark
If $P(k+1)$ is not a prime, then we should prove that $k+1=r \times s$, where r and s are positive integers greater than 1 and less than $k+1$.
However, from $P(k)$ we know nothing about r and $s \longrightarrow$???
Proof Techniques
Proof by Induction
The Strong Principle of Mathematical Inductio
The Strong Principle of Mathematical Inductio
Peano Axioms

The Strong Principle of Mathematical Induction

Suppose $P(n)$ is a statement involving an integer n. Then to prove that $P(n)$ is true for every $n \geq n_{0}$, it is sufficient to show these two things:

- $P\left(n_{0}\right)$ is true.
- For any $k \geq n_{0}$, if $P(n)$ is true for every n satisfying $n_{0} \leq n \leq k$, then $P(k+1)$ is true.

Also called the principle of complete induction, or course-of-values induction.

Formal Description Proof Techinques Proof by Induction	Mathematical Induction Minimal Counterexample Principle The Strong Principle of Mathematical Induction Peano Axioms
To Complete the Example	

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \geq 2$ and $2 \leq n \leq k, P(n)$ is true. (Strong Principle)
Proof of induction step. Let's prove $P(k+1)$.
If $P(k+1)$ is prime, \checkmark
If $P(k+1)$ is not a prime, by definition of a prime, $k+1=r \times s$, where r and s are positive integers greater than 1 and less than $k+1$.
It follows that $2 \leq r \leq k$ and $2 \leq s \leq k$. Thus by induction hypothesis, both r and s are either prime or the product of two or more primes. Then their product $k+1$ is the product of two or more primes. $P(k+1)$ is true.

Formal Description Proof Techniques

- In 1889, Peano published the first set of axioms.
- Build a rigorous system of arithmetic, number theory, and algebra.
- A simple but solid foundation to construct the edifice of modern mathematics.
- The fifth axiom deserves special comment. It is the first formal statement of what we now call the "induction axiom" or "the principle of mathematical induction".
- Axiom 1.0 is a number.
- Axiom 2. The successor of any number is a number.
- Axiom 3. If a and b are numbers and if their successors are equal, then a and b are equal.
- Axiom 4. 0 is not the successor of any number.
- Axiom 5. If S is a set of numbers containing 0 and if the successor of any number in S is also in S, then S contains all the numbers.

Let $S(n)$ be a statement about $n \in \mathbb{N}$. Suppose
(1) $S(1)$ is true, and
(2) $S(t+1)$ is true whenever $S(t)$ is true for $t \geq 1$.

Then $S(n)$ is true for all $n \in \mathbb{N}$.

Can use contradiction and Peano Axiom to prove the correctness of $S(n)$.

