Proof Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China October 31, 2016	 Formal Description Definition Categories Proof Techniques Proof by Construction Proof by Contrapositive Proof by Contrapositive Proof by Cases Proof by Induction Mathematical Induction Minimal Counterexample Principle The Strong Principle of Mathematical Induction Peano Axioms
CS101-Introduction To Computer Science@SJTU Xiaofeng Gao Slide04-Proof 1/28	CS101-Introduction To Computer Science@SJTU Xiaofeng Gao Slide04-Proof 2/28
Formal Description Definition Proof Techniques Categories	Formal Description Definition Proof Techniques Categories
What is proof?	Types of Proof
 A proof of a statement is essentially a convincing argument that the statement is true. A typical step in a proof is to derive statements from assumptions or hypotheses. statements that have already been derived. other generally accepted facts, using general principles of logical reasoning. 	 Proof by Construction Proof by Contrapositive Proof by Contradiction Proof by Counterexample Proof by Cases Proof by Mathematical Induction The Principle of Mathematical Induction Minimal Counterexample Principle The Strong Principle of Mathematical Induction

Outline

4/28

Formal Description Proof Techniques Proof by Induction Formal Description Proof Techniques Proof by Induction Proof by Construction Proof by Construction Proof by Construction

Proof by Construction ($\forall x, P(x)$ holds)

CS101-Introduction To Computer Science@SJTU Xiaofeng Gao

 $A \cap C = \emptyset$.

 $A \cap B = \emptyset.$

Example: For any integers *a* and *b*, if *a* and *b* are odd, then *ab* is odd.

Proof: Since *a* and *b* are odd, there exist integers *x* and *y* such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer *z* so that ab = 2z + 1. Let us therefore consider *ab*.

ab = (2x+1)(2y+1)= 4xy + 2x + 2y + 1= 2(2xy + x + y) + 1

Thus if we let z = 2xy + x + y, then ab = 2z + 1, which implies that ab is odd.

Proof Techniques

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Then there exists *x* with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Therefore $x \in A \cap B$, which contradicts the assumption that

Proof by Contradiction (p is true $\Leftrightarrow \neg p \rightarrow false$ is true)

Example: For any sets *A*, *B*, and *C*, if $A \cap B = \emptyset$ and $C \subseteq B$, then

Slide04-Proof

Proof by Contrapositive

 Formal Description
 Proof by Construction

 Proof Techniques
 Proof by Contrapositive

 Proof by Induction
 Proof by Cases

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \le \sqrt{n}$ or $j \le \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$. If it is not true that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$. Since $j > \sqrt{n} \geq 0$, we have

$$i > \sqrt{n} \Rightarrow i \times j > \sqrt{n} \times j > \sqrt{n} \times \sqrt{n} = n.$$

It follows that $i \times j \neq n$. The original statement is true.

10/28

CS101-Introduction To Computer Science@SJTU	Xiaofeng Gao	Slide04
---	--------------	---------

ormal Description Proof by Constructi Proof Techniques Proof by Induction Proof by Cases

-Proof

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: *n* is even and *n* is odd.

Case 1. *n* is even. Let n = 2k, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k)^{2} + 2k + 14$$

= $12k^{2} + 2k + 14$
= $2(6k^{2} + k + 7)$

Since $6k^2 + k + 7$ is an integer, $3n^2 + n + 14$ is even if *n* is even.

Proof Techniques Proof by Cases

Proof by Cases (Cont.)

CS101-Introduction To Computer Science@SJTU

Case 2. *n* is odd. Let n = 2k + 1, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$$

= 3(4k² + 4k + 1) + (2k + 1) + 14
= 12k² + 12k + 3 + 2k + 1 + 14
= 12k² + 14k + 18
= 2(6k² + 7k + 9)

Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if *n* is odd.

Xiaofeng Gao

Since in both cases $3n^2 + n + 14$ is even, it follows that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Slide04-Proof

Mathematical Induction

Mathematical Induction

The Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer *n*. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(k) is true, then P(k+1) is true.

CS101-Introduction To Computer Science@SJTU	Xiaofeng Gao	Slide04-Proof
---	--------------	---------------

Market Comparison
Proof by InductionMarket Comparison
Proof by InductionMarket Comparison
Proof by InductionAn Example: Let
$$P(n)$$
 be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that
 $P(n)$ is true for every $n \ge 0$.The Minimal Counterexample Principle
The Analysis of Market and Latence
 $P(n)$ is true for $n \ge 0$ by induction.Basis step. $P(0)$ is $0 = 0(0 + 1)/2$, and it is obviously true.Example: Prove $\forall n \in \mathbb{N}$, $5^n - 2^n$ is divisible by 3.Induction Hypothesis. Assume $P(k)$ is true for some $k \ge 0$. Then
 $0 + 1 + 2 + \dots + k = k(k + 1)/2$.Proof induction Step. Now let us prove that $P(k + 1)$ is true. $0 + 1 + 2 + \dots + k + (k + 1) = k(k + 1)/2 + (k + 1) = (k + 1)(k/2 + 2) = 0$ Since k is the smallest value for which $P(k)$ false, $P(k - 1)$ is true.

Formal Description Proof Techniques Proof by Induction

Minimal Counterexample Principle The Strong Principle of Mathematical Inductio Bases A views

The Minimal Counterexample Principle (Cont.)

However, we have

$$5^{k} - 2^{k} = 5 \times 5^{k-1} - 2 \times 2^{k-1}$$

= 5 × (5^{k-1} - 2^{k-1}) + 3 × 2^{k-1}
= 5 × 3*i* + 3 × 2^{k-1}

This expression is divisible by 3. We have derived a contradiction, which allows us to conclude that our original assumption is false. \Box

Slide04-Proof

The Strong Principle of Mathematical Induction

Formal Description Proof Techniques Proof by Induction

Minimal Counterexample Principle The Strong Principle of Mathematical Induction Peano Axioms

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "*n* is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Proof of induction step. Let's prove P(k + 1).

If P(k + 1) is prime, \checkmark If P(k + 1) is not a prime, then we should prove that $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than k + 1.

However, from P(k) we know nothing about r and $s \rightarrow ???$

CS101-Introduction To Computer Science@SJTU	Xiaofeng Gao	Slide04
---	--------------	---------

Formal Description M Proof Techniques T Proof by Induction P

Minimal Counterexample Principle The Strong Principle of Mathematical Induction Peano Axioms

Proof

To Complete the Example

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Continue the Proof: Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k + 1).

If P(k + 1) is prime, \checkmark If P(k + 1) is not a prime, by definition of a prime, $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than k + 1.

It follows that $2 \le r \le k$ and $2 \le s \le k$. Thus by induction hypothesis, both *r* and *s* are either prime or the product of two or more primes. Then their product k + 1 is the product of two or more primes. P(k + 1) is true.

Suppose P(n) is a statement involving an integer *n*. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

Proof Techniques

Proof by Induction

The Strong Principle of Mathematical Induction

• $P(n_0)$ is true.

CS101-Introduction To Computer Science@SJTU Xiaofeng Gao

For any k ≥ n₀, if P(n) is true for every n satisfying n₀ ≤ n ≤ k, then P(k + 1) is true.

Also called the principle of complete induction, or course-of-values induction.

Formal Description Proof Techniques Proof by Induction

Mathematical induction Minimal Counterexample Principle The Strong Principle of Mathematical Induction Peano Axioms

Giuseppe Peano (1858-1932)

CS101-Introduction To Computer Science@SJTU Xiaofeng Gao

- In 1889, Peano published the first set of axioms.
- Build a rigorous system of arithmetic, number theory, and algebra.
- A simple but solid foundation to construct the edifice of modern mathematics.
- The fifth axiom deserves special comment. It is the first formal statement of what we now call the "induction axiom" or "the principle of mathematical induction".

Slide04-Proof

Formal Description Proof Techniques Proof by Induction Mathematical Induction Minimal Counterexample Principle The Strong Principle of Mathematical Induction Peano Axioms

Peano Five Axioms

- Axiom 1. 0 is a number.
- Axiom 2. The successor of any number is a number.
- Axiom 3. If *a* and *b* are numbers and if their successors are equal, then *a* and *b* are equal.
- Axiom 4. 0 is not the successor of any number.
- Axiom 5. If *S* is a set of numbers containing 0 and if the successor of any number in *S* is also in *S*, then *S* contains all the numbers.

CS101-Introduction To Computer Science@SJTU Xiaofeng Gao Slide04-Proof 26/28	CS101-Introduction To Computer Science@SJTU Xiaofeng Gao Slide04-Proof 27/28
Formal Description Proof Techniques Proof by Induction Proof by Induction Proof Athematical Induction Proof by Induction Proof Athematical Induction Proof Principle The Strong Principle Principle of Mathematical Induction Peano Axioms	
Peano Axioms vs Theorem of Mathematical Induction	
Let $S(n)$ be a statement about $n \in \mathbb{N}$. Suppose	
• $S(1)$ is true, and	
2 $S(t+1)$ is true whenever $S(t)$ is true for $t \ge 1$.	
Then $S(n)$ is true for all $n \in \mathbb{N}$.	
Can use contradiction and Peano Axiom to prove the correctness of $S(n)$.	