Computability*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P. R. China

CSC101-Introduction to Computer Science
${ }^{*}$ This lecture note is arranged according to Prof. John Hopcroft's Introduction to Computer Science course at SJTU. CSC101-IntroductionToCS@ © is

Cardinality
Cantor Diagonal Method
Halting Problem and Language
Turing Machine
:---:
Schröder-Bermstein Theore

Cardinality of Sets

For finite sets, it is easy to compare their cardinality.

- E.g., $|\{1,2,3\}|>|\{a, b\}|$.

For infinite set, we need to match them pairwise.

- If A can map 'one-to-one' into B, then $A \preceq B$.
- If A can map 'onto' into B, then $A \succeq B$.
- If A can map 'one-to-one' and 'onto' into B, then $A \approx B$.

Outline

(1) Cardinality

- Basic Concepts
- Schröder-Bernstein Theorem
(2) Cantor Diagonal Method
- Basic Idea
- Computable Function
- Computable Function vs Diagonal Method
(3) Halting Problem and Language
- Halting Problem
- Language

4) Turing Machine

- One-Tape Turing Machine
- Multi-Tape Turing Machine
- Computing Capacity for Difference Turing Machines

Proof. It is done with mirrors.
We are given one-to-one functions $f: A \rightarrow B$ and $g: B \rightarrow A$. Define C_{n} by recursion, using the formulas

$$
C_{0}=A-\operatorname{ran}(g) \quad \text { and } \quad C_{n^{+}}=g\left[f\left[C_{n}\right]\right] .
$$

Thus C_{0} is the troublesome part that keeps g from being an one-to-one correspondence between B and A. We bounce it back and forth, obtaining C_{1}, C_{2}, \cdots. The function showing that $A \approx B$ is the function h : $A \rightarrow B$ defined by

$$
h(x)= \begin{cases}f(x) & \text { if } x \in C_{n} \text { for some } n \\ g^{-1}(x) & \text { otherwise }\end{cases}
$$

Note that in the second case ($x \in A$ but $x \notin C_{n}$ for any n) it follows that $x \notin C_{0}$ and hence $x \in \operatorname{ran}(g)$.
Thus $g^{-1}(x)$ makes sense in this case.

Finally we must check that $\operatorname{ran}(h)$ exhausts B.
Certainly each $D_{n} \subseteq \operatorname{ran}(h)$, because $D_{n}=h\left[C_{n}\right]$. Consider then a point y in $B-\cup_{n \in \omega} D_{n}$.

Where is $g(y)$? Certainly $g(y) \notin C_{0}$. Also $g(y) \notin C_{n^{+}}$, because $C_{n^{+}}=g\left[D_{n}\right], y \notin D_{n}$, and g is one-to-one.

So $g(y) \notin C_{n}$ for any n. Therefore $h(g(y))=g^{-1}(g(y))=y$. This shows that $y \in \operatorname{ran}(h)$, thereby proving it.

Cardinality

Does it work? We must verify that h is one-to-one and has range B.
Define $D_{n}=f\left[C_{n}\right]$, so that $C_{n^{+}}=g\left[D_{n}\right]$.
To show that h is one-to-one, consider distinct x and x^{\prime} in A.
Since both f and g^{-1} are one-to-one, the only possible problem arises when, say, $x \in C_{m}$ and $x^{\prime} \notin \cup_{n \in \omega} C_{n}$.

In this case, $h(x)=f(x) \in D_{m}$, whereas $h(x)=g^{-1}(x) \notin D_{m}$, lest $x^{\prime} \in C_{m^{+}}$. So $h(x) \neq h\left(x^{\prime}\right)$.

Cantor Diagonal Method Halting Problem and Language Turing Machine	Basic Idea Computable Function Computable Function vs Diagonal Method
Cantor's Diagonal Argument	

In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor.

It was proposed as a mathematical proof for uncountable sets.

It demonstrates a powerful and general technique that has been used in a wide range of proofs.

Georg Cantor 1845-1918

Cantor Diagonal Method

Assumption: If $\left\{s_{1}, s_{2}, \cdots, s_{n}, \cdots\right\}$ is any enumeration of elements from T, then there is always an element s of T which corresponds to no s_{n} in the enumeration.

Diagonal Method: Construct the sequence s by choosing the $1^{\text {st }}$ digit as complementary to the $1^{s t}$ digit of s_{1}, the $2^{\text {nd }}$ digit as complementary to the $2^{\text {nd }}$ digit of s_{2}, and generally for every n, the $n^{\text {th }}$ digit as complementary to the $n^{\text {th }}$ digit of s_{n}.

By construction, s differs from each s_{n}, since their $n^{\text {th }}$ digits differ (highlighted in the example). Hence, s cannot occur in the enumeration.

Based on this theorem, Cantor then uses a proof by contradiction to show that:

The set T is uncountable.
Proof. He assumes for contradiction that T was countable. Then all its elements could be written as an enumeration $s_{1}, s_{2}, \cdots, s_{n}, \cdots$. Applying the previous theorem to this enumeration would produce a sequence s not belonging to the enumeration.

However, s was an element of T and should therefore be in the enumeration. This contradicts the original assumption, so T must be uncountable.

- Methods for addition, multiplication...
\triangleright Given n, finding the nth prime number.
\triangleright Differentiating a polynomial.
\triangleright Finding the highest common factor of two numbers $\operatorname{HCF}(x, y) \rightarrow$ Euclidean algorithm
\triangleright Given two numbers x, y, deciding whether x is a multiple of y.
- Their implementation requires no ingenuity, intelligence, inventiveness.

An algorithm or effective procedure is a mechanical rule, or automatic method, or programme for performing some mathematical operations.

Blackbox:

An Example: Consider the function $g(n)$ defined as follows:
$g(n)= \begin{cases}1, & \text { if there is a run of exactly } n \text { consecutive } 7^{\prime} \mathrm{s} \\ \text { in the decimal expansion of } \pi, \\ 0, & \text { otherwise. }\end{cases}$
Question: Is $g(n)$ effective?
\triangleright The answer is unknown \neq the answer is negative.
Other Examples:

- Theorem Proving is in general not effective/algorithmic.
- Proof Verification is effective/algorithmic.

Algorithm and Computable Function

Algorithm: An algorithm is a procedure that consists of a finite set of instructions which, given an input from some set of possible inputs, enables us to obtain an output through a systematic execution of the instructions that terminates in a finite number of steps.

Computable Function: When an algorithm or effective procedure is used to calculate the value of a numerical function then the function in question is effectively calculable (or algorithmically computable, effectively computable, computable).

- n-ary function: $f\left(x_{1}, \cdots, x_{n}\right), f: \mathbb{N}^{n} \rightarrow \mathbb{N}$.
- Partial function: $\operatorname{dom}(f)$ is not necessarily the whole \mathbb{N}^{n}. (In our class function means partial function)
- Total function: $\operatorname{dom}(f)=\mathbb{N}^{n}$.

The definition of unary function is similar.

Cardor Diagonal Mality
Hating Problem and Language
Turing Machine
:---
Computable Function
Computable Function vs Diagonal Method

Theorem: The computable functions are countable (enumerable).
Proof: By Gödel Coding technique (will not covered here).
Thus, we can enumerate all computable functions as a sequence $\mathscr{C}=\left\{\phi_{0}, \phi_{1}, \cdots\right\}$.

Theorem. There is a total unary function that is not computable.
Proof. Suppose $\phi_{0}, \phi_{1}, \phi_{2}, \ldots$ is an enumeration of \mathscr{C}_{1}. Define

$$
f(n)= \begin{cases}\phi_{n}(n)+1, & \text { if } \phi_{n}(n) \text { is defined } \\ 0, & \text { if } \phi_{n}(n) \text { is undefined. }\end{cases}
$$

The function $f(n)$ is not computable.

Consider again the construction of f to construct a total uncomputable function. Complete details of the functions $\phi_{0}, \phi_{1}, \cdots$ can be represented by the following infinite table:

	0	1	2	3	4
ϕ_{0}	$\phi_{0}(0)$	$\phi_{0}(1)$	$\phi_{0}(2)$	$\phi_{0}(3)$	\cdots
ϕ_{1}	$\phi_{1}(0)$	$\phi_{1}(1)$	$\phi_{1}(2)$	$\phi_{1}(3)$	\ldots
ϕ_{2}	$\phi_{2}(0)$	$\phi_{2}(1)$	$\phi_{2}(2)$	$\phi_{2}(3)$	\cdots
ϕ_{3}	$\phi_{3}(0)$	$\phi_{3}(1)$	$\phi_{3}(2)$	$\phi_{3}(3)$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	

Cantor Diagonal Meltity
Halting Problem and Language
Turing Machine
:---

We suppose that in this table the word 'undefined' is written whenever $\phi_{n}(m)$ is not defined.

The function f was constructed by taking the diagonal entries on the table $\phi_{0}(0), \phi_{1}(1), \phi_{2}(2), \cdots$ and systematically changing them, obtaining $f(0), f(1), \cdots$ such that $f(n)$ differs from $\phi_{n}(n)$, for each n.

Note that there was considerable freedom in choosing the value of $f(n)$ (just differ from $\phi_{n}(n)$). Thus

$$
g(n)= \begin{cases}\phi_{n}(n)+27^{n} & \text { if } \phi_{n}(n) \text { is defined, } \\ n^{2} & \text { if } \phi_{n}(n) \text { is undefined, }\end{cases}
$$

is another non-computable total function.

Theorem: halt is uncomputable.
Proof. Assume halt is computable, then we can compute the uncomputable $f(i)$ (mentioned above) as follow.

First compute $\phi(i)=$ halt(prog, i,
$\{$ If halt $($ prog,$i)=n o, \quad$ output 0,
If $\operatorname{halt}(\operatorname{prog}, i)=y e s, \quad$ simulate program with i and add 1 to answer,
So it is impossible. Thus halt is uncomputable

Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ be the set of symbols, called alphabet.
A string (word) from Σ is a sequence $a_{i_{1}}, \cdots, a_{i_{n}}$ of symbols from Σ.
Σ^{*} is the set of all words/strings from Σ. (Kleene Star)
ε is the empty string, that has no symbols.

Production Rules:

$\circ A \rightarrow a$;
$\circ A \rightarrow a B ;$
$\circ A \rightarrow \varepsilon$;

Type-3 grammar can be constructed based on Nondeterministic Finite Automata (NFA).

Context-Free Language (Type-2 Language)

Definition:

- T is alphabet subset (terminals)
$\circ N$ is arbitrary string set (non-terminals, S is starting symbol);
$\circ Q=\left\{A \rightarrow \beta, \beta \in(N \cup T)^{+} \cup\{\Lambda\}\right\}$ (production set);
Example: $T=\{a, b, c\} ; N=\{S, A, B\}$,
$Q=\{S \rightarrow A B ; B \rightarrow b ; A \rightarrow a A \mid c\}$
Derivation:
$S \Rightarrow A B \Rightarrow a A B \Rightarrow a A b \Rightarrow a a A b \Rightarrow a a c b$
Parse Tree:
- A tree representing a derivation;

- All internal nodes are non-terminals;
- All leave nodes are terminals;
- Build a tree following derivation.

Definition:

- T alphabet subset (terminals)
$\circ N$ arbitrary string set (non-terminals, S is starting symbol);
$\circ Q=\{\alpha A \beta \rightarrow \alpha \gamma \beta\}$
\triangleright Replace A by γ only if found in the context of α and β;
\triangleright Left side does not have to be a single non-terminal;
$\triangleright \alpha, \beta \in(N \cup T)^{*}$;
$\triangleright \gamma \in(N \cup T)^{*}-\Lambda$.
Also Q includes all possible rules in type-2 grammar.
Corresponds to recursive language

Chomsky Schützenberger Hierarchy

Recursively Enumerable Language (Type-0 Language)

Production Rules:

- Include all possible forms for the rules Type-3 to Type-1;
- Allow rules of the form: $\alpha \rightarrow \beta$
$\triangleright \alpha \in(N \cup T)^{*} N(N \cup T)^{*} ;$ (At least one non-terminal)
$\triangleright \beta \in(N \cup T)^{*}$.

Type-0 language includes all languages that are recognizable by Tuning machine.

One-Tape Turing Machine

A Turing machine has five components:

1. A finite set $\left\{s_{1}, \ldots, s_{n}\right\} \cup\{\triangleright, \sharp, \triangleleft\} \cup\{\square\}$ of symbols.
2. A tape consists of an infinite number of cells, each cell may store a symbol.
3. A reading head that scans and writes on the cells.
4. A finite set $\left\{q_{S}, q_{1}, \ldots, q_{m}, q_{H}\right\}$ of states.
5. A finite set of instructions (specification).

An Example

Given a Turing machine M with the alphabet $\{0,1\} \cup\{\triangleright, \square, \triangleleft\}$.

$\begin{gathered}\text { Cantor Diagonal Method } \\ \text { Halting Problem and Language }\end{gathered}$ $\begin{aligned} & \text { One-Tape Turing Machine } \\ & \text { Multi-Tape Turing Machine }\end{aligned}$
Multi-lape Turing Machine
Computing Capacity for Difference Turing Machines

Turing Machines, Turing 1936

The input data

$$
\triangleright s_{1}^{1} \ldots s_{i_{1}}^{1} \square \ldots \square s_{1}^{k} \ldots s_{i_{k}}^{k} \triangleleft \square \ldots
$$

The reading head may write a symbol, move left, move right.
An instruction is of the form:

$$
\left\langle q_{i}, s_{j}\right\rangle \rightarrow\left\langle q_{l}, s_{k}, L\right\rangle,
$$

which means when reads s_{j} with state q_{i}, the machine will turn to state q_{l}, replace s_{j} with s_{k}, and turn one cell to the left.

The direction can be L, R, or S, meaning move to left, right, or stay at the current position.

Cardinality
Cantor Diagonal Method Halting Problem and Language Turing Machine
:---
Multi-Tape Turing Machine
Computing Capacity for Difference Turing Machines

A multi-tape TM is described by a tuple (Γ, Q, δ) containing

- A finite set Γ called alphabet, of symbols. It contains a blank symbol \square, a start symbol \triangleright, and the digits 0 and 1 .
- A finite set Q of states. It contains a start state $q_{\text {start }}$ and a halting state $q_{\text {halt }}$.
- A transition function $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k-1} \times L, S, R^{k}$, describing the rules of each computation step.

Example: A 2-Tape TM will have transition function (also named as specification) like follows:

$$
\begin{array}{lll}
\left\langle q_{s}, \triangleright, \triangleright\right\rangle & \rightarrow & \left\langle q_{1}, \triangleright, R, R\right\rangle \\
\left\langle q_{1}, 0,1\right\rangle & \rightarrow & \left\langle q_{2}, 0, S, L\right\rangle
\end{array}
$$

Computation, configuration, initial/final configuration

A palindrome is a word that reads the same both forwards and backwards. For instance:
ada, anna, madam, and nitalarbralatin.

Requirement: Give the specification of M with $k=3$ to recognize palindromes on symbol set $\{0,1, \triangleright, \triangleleft, \square\}$.

A 3-Tape TM for the Palindrome Problem

$Q=\left\{q_{s}, q_{h}, q_{c}, q_{l}, q_{t}, q_{r}\right\} ; \Gamma=\{\square, \triangleright, \triangleleft, 0,1\} ;$ two work tapes.
To recognize palindrome we need to check the input string, output 1 if the string is a palindrome, and 0 otherwise.

Initially the input string is located on the first tape like " $\triangleright 0110001 \triangleleft \square \square \square \cdots$ ", strings on all other tapes are " $\triangleright \square \square \square \cdot \cdots$ ".

The head on each tape points the first symbol " \triangleright " as the starting state, with state mark q_{S}.

In the final state q_{F}, the output of the $k^{\text {th }}$ tape should be " $\triangleright 1 \triangleleft \square$ " if the input is a palindrome, and " $\triangleright 0 \triangleleft \square$ " otherwise.

Start State:
$\left\langle q_{s}, \triangleright, \triangleright, \triangleright\right\rangle \rightarrow\left\langle q_{c}, \triangleright, \triangleright, R, R, R\right\rangle$
Begin to copy:
$\left\langle q_{c}, 0, \square, \square\right\rangle \rightarrow\left\langle q_{c}, 0, \square, R, R, S\right\rangle$
$\left\langle q_{c}, 1, \square, \square\right\rangle \rightarrow\left\langle q_{c}, 1, \square, R, R, S\right\rangle$
$\left\langle q_{c}, \triangleleft, \square, \square\right\rangle \rightarrow\left\langle q_{l}, \square, \square, L, S, S\right\rangle$
Return back to the leftmost:

$$
\begin{aligned}
& \left\langle q_{l}, 0, \square, \square\right\rangle \\
& \left\langle q_{l}, 1, \square, \square\right\rangle
\end{aligned}\left\langle\left\langle q_{l}, \square, \square, L, S, S\right\rangle, \square q_{l}, \square, \square, L, S, S\right\rangle
$$

Begin to compare:
$\left\langle q_{t}, \triangleleft, \triangleright, \square\right\rangle \rightarrow\left\langle q_{r}, \triangleright, 1, S, S, R\right\rangle$
$\left\langle q_{t}, 0,1, \square\right\rangle \rightarrow\left\langle q_{r}, 1,0, S, S, R\right\rangle$
$\left\langle q_{t}, 1,0, \square\right\rangle \rightarrow\left\langle q_{r}, 0,0, S, S, R\right\rangle$
$\left\langle q_{t}, 0,0, \square\right\rangle \rightarrow\left\langle q_{t}, 0, \square, R, L, S\right\rangle$
$\left\langle q_{t}, 1,1, \square\right\rangle \rightarrow\left\langle q_{t}, 1, \square, R, L, S\right\rangle$
Ready to terminate:
$\left\langle q_{r}, \triangleleft, \triangleright, \square\right\rangle \rightarrow\left\langle q_{h}, \triangleright, \triangleleft, S, S, S\right\rangle$
$\left\langle q_{r}, 0,1, \square\right\rangle \rightarrow\left\langle q_{h}, 1, \triangleleft, S, S, S\right\rangle$
$\left\langle q_{r}, 1,0, \square\right\rangle \rightarrow\left\langle q_{r}, 0, \triangleleft, S, S, S\right\rangle$

- The basic idea is to interleave k tapes into one tape.
- The first $n+1$ cells are reserved for the input.

```
Ms 3 work tapes:
    r-
```



```
Encoding this in one tape of M:
1231231123123123123
c| ||m|o|\hat{e}|a|m|p|c|\hat{p}|||\hat{\textrm{h}}|
```

- Every symbol a of M is turned into two symbols a, \hat{a} in \tilde{M}, with \hat{a} used to indicate head position.

| CSC101-IntroductionToCS@SJTU | Xiaofeng Gao | Computability |
| :--- | :--- | :--- | :--- |
| Cardinality
 Cantor Diagonal Method
 Halting Problem and Language
 Turing Machine | One-Tape Turing Machine
 Multi-Tape Turing Machine
 Computing Capacity for Difference Turing Machines | |
| Unidirectional Tape VS. Bidirectional Tape | | |

Define a bidirectional Turing Machine to be a TM whose tapes are infinite in both directions.

Fact: If $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable in time $T(n)$ by a bidirectional TM M, then it is computable in time $4 T(n)$ by a TM \widetilde{M} with one-directional tape.

Halling Prorble Dagonal Metho
 Turing Machine
 Multi-Tape Turing Machine Computing Capacity for Difference Turing Machines
 Single-Tape vs. Multi-Tape

The outline of the algorithm:
The machine \widetilde{M} places \triangleright after the input string and then starts copying the input bits to the imaginary input tape. During this process whenever an input symbol is copied it is overwritten by \triangleright.
\widetilde{M} marks the $n+2$-cell, \ldots, the $n+k$-cell to indicate the initial head positions.
\widetilde{M} Sweeps $k T(n)$ cells from the $(n+1)$-th cell to right, recording in the register the k symbols marked with the hat ${ }_{_}$.
\widetilde{M} Sweeps $k T(n)$ cells from right to left to update using the transitions of M. Whenever it comes across a symbol with hat, it moves right k cells, and then moves left to update.

- The idea is that \widetilde{M} makes use of the alphabet $\Gamma \times \Gamma$.

M's tape is infinite in both directions

$\tilde{\mathrm{M}}$ uses a larger alphabet to represent it on a standard tape:

- Every state q of M is turned into \bar{q} and q.

Unidirectional Tape vs. Bidirectional Tape

Let H range over $\{L, S, R\}$ and let $-H$ be defined by

$$
-H= \begin{cases}R, & \text { if } \quad H=L \\ S, & \text { if } H=S \\ L, & \text { if } H=R\end{cases}
$$

\widetilde{M} contains the following transitions:

$$
\begin{aligned}
& \langle\bar{q},(\triangleright, \triangleright)\rangle \rightarrow\langle\underline{q},(\triangleright, \triangleright), R\rangle \\
& \langle\underline{q},(\triangleright, \triangleright)\rangle \rightarrow\langle\overline{\bar{q}},(\triangleright, \triangleright), R\rangle \\
& \langle\bar{q},(a, b)\rangle \rightarrow\left\langle\bar{q}^{\prime},\left(a^{\prime}, b\right), H\right\rangle \text { if }\langle q, a\rangle \rightarrow\left\langle q^{\prime}, a^{\prime}, H\right\rangle \\
& \langle\underline{q},(a, b)\rangle \rightarrow\left\langle\underline{q}^{\prime},\left(a, b^{\prime}\right),-H\right\rangle \text { if }\langle q, b\rangle \rightarrow\left\langle q^{\prime}, b^{\prime}, H\right\rangle
\end{aligned}
$$

