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Basic Concepts
Schröder-Bernstein Theorem

Cardinality of Sets

For finite sets, it is easy to compare their cardinality.

E.g., |{1, 2, 3}| > |{a, b}|.

For infinite set, we need to match them pairwise.

If A can map ‘one-to-one’ into B, then A � B.

If A can map ‘onto’ into B, then A � B.

If A can map ‘one-to-one’ and ‘onto’ into B, then A ≈ B.
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Schröder-Bernstein Theorem

Schröder-Bernstein Theorem: A � B , A � B ⇒ A ≈ B.

Proof. It is done with mirrors.

We are given one-to-one functions f : A → B and g : B → A. Define

Cn by recursion, using the formulas

C0 = A − ran(g) and Cn+ = g[f [Cn]].

Thus C0 is the troublesome part that keeps g from being an one-to-one

correspondence between B and A. We bounce it back and forth,

obtaining C1,C2, · · · . The function showing that A ≈ B is the

function h: A → B defined by

h(x) =

{
f (x) if x ∈ Cn for some n,

g−1(x) otherwise.
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Schröder-Bernstein Theorem (Cont.)

Note that in the second case (x ∈ A but x /∈ Cn for any n) it follows

that x /∈ C0 and hence x ∈ ran(g).

Thus g−1(x) makes sense in this case.
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Schröder-Bernstein Theorem (Cont.)

Does it work? We must verify that h is one-to-one and has range B.

Define Dn = f [Cn], so that Cn+ = g[Dn].

To show that h is one-to-one, consider distinct x and x′ in A.

Since both f and g−1 are one-to-one, the only possible problem arises

when, say, x ∈ Cm and x′ /∈ ∪n∈ωCn.

In this case, h(x) = f (x) ∈ Dm, whereas h(x) = g−1(x) /∈ Dm, lest

x′ ∈ Cm+ . So h(x) 6= h(x′).
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Schröder-Bernstein Theorem (Cont.)

Finally we must check that ran(h) exhausts B.

Certainly each Dn ⊆ ran(h), because Dn = h[Cn]. Consider then a

point y in B − ∪n∈ωDn.

Where is g(y)? Certainly g(y) /∈ C0. Also g(y) /∈ Cn+ , because

Cn+ = g[Dn], y /∈ Dn, and g is one-to-one.

So g(y) /∈ Cn for any n. Therefore h(g(y)) = g−1(g(y)) = y. This

shows that y ∈ ran(h), thereby proving it. ✷
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Cantor’s Diagonal Argument

In set theory, Cantor’s diagonal argument, also

called the diagonalisation argument, the diagonal

slash argument or the diagonal method, was

published in 1891 by Georg Cantor.

It was proposed as a mathematical proof for

uncountable sets.

It demonstrates a powerful and general technique

that has been used in a wide range of proofs.

Georg Cantor

1845-1918
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Cantor’s Diagonal Method

Assumption: If {s1, s2, · · · , sn, · · · } is any enumeration of elements

from T , then there is always an element s of T which corresponds to

no sn in the enumeration.

Diagonal Method: Construct the sequence s

by choosing the 1st digit as complementary to

the 1st digit of s1 , the 2nd digit as comple-

mentary to the 2nd digit of s2, and generally

for every n, the nth digit as complementary to

the nth digit of sn.

By construction, s differs from each sn, since

their nth digits differ (highlighted in the ex-

ample). Hence, s cannot occur in the enumer-

ation.
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Cantor Diagonal Method

Based on this theorem, Cantor then uses a proof by contradiction to

show that:

The set T is uncountable.

Proof. He assumes for contradiction that T was countable. Then all

its elements could be written as an enumeration s1, s2, · · · , sn,· · · .

Applying the previous theorem to this enumeration would produce a

sequence s not belonging to the enumeration.

However, s was an element of T and should therefore be in the

enumeration. This contradicts the original assumption, so T must be

uncountable.
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What is Effective Procedure

Methods for addition, multiplication · · ·

⊲ Given n, finding the nth prime number.

⊲ Differentiating a polynomial.

⊲ Finding the highest common factor of two numbers HCF(x, y) →
Euclidean algorithm

⊲ Given two numbers x, y, deciding whether x is a multiple of y.

Their implementation requires no ingenuity, intelligence,

inventiveness.
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Intuitive Definition

An algorithm or effective procedure is a mechanical rule, or automatic

method, or programme for performing some mathematical operations.

Blackbox: input −→ −→ output
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What is “effective procedure”?

An Example: Consider the function g(n) defined as follows:

g(n) =





1, if there is a run of exactly n consecutive 7′s

in the decimal expansion of π,
0, otherwise.

Question: Is g(n) effective?

⊲ The answer is unknown 6= the answer is negative.

Other Examples:

Theorem Proving is in general not effective/algorithmic.

Proof Verification is effective/algorithmic.

CSC101-IntroductionToCS@SJTU Xiaofeng Gao Computability 17/51

Cardinality
Cantor Diagonal Method

Halting Problem and Language
Turing Machine

Basic Idea
Computable Function
Computable Function vs Diagonal Method

Algorithm and Computable Function

Algorithm: An algorithm is a procedure that consists of a finite set of

instructions which, given an input from some set of possible inputs,

enables us to obtain an output through a systematic execution of the

instructions that terminates in a finite number of steps.

Computable Function: When an algorithm or effective procedure is

used to calculate the value of a numerical function then the function

in question is effectively calculable (or algorithmically computable,

effectively computable, computable).
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Partial and Total Function

n-ary function: f (x1, · · · , xn), f : Nn → N.

Partial function: dom(f ) is not necessarily the whole N
n. (In our

class function means partial function)

Total function: dom(f ) = N
n.

The definition of unary function is similar.
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Computable Functions

Theorem: The computable functions are countable (enumerable).

Proof: By Gödel Coding technique (will not covered here).

Thus, we can enumerate all computable functions as a sequence

C = {φ0, φ1, · · · }.
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Uncomputable Function

Theorem. There is a total unary function that is not computable.

Proof. Suppose φ0, φ1, φ2, . . . is an enumeration of C1. Define

f (n) =

{
φn(n) + 1, if φn(n) is defined,
0, if φn(n) is undefined.

The function f (n) is not computable.
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Example of uncomputable function

Consider again the construction of f to construct a total uncomputable

function. Complete details of the functions φ0, φ1, · · · can be

represented by the following infinite table:
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Diagonal Method

We suppose that in this table the word ‘undefined’ is written whenever

φn(m) is not defined.

The function f was constructed by taking the diagonal entries on the

table φ0(0), φ1(1), φ2(2), · · · and systematically changing them,

obtaining f (0), f (1), · · · such that f (n) differs from φn(n), for each n.

Note that there was considerable freedom in choosing the value of

f (n) (just differ from φn(n)). Thus

g(n) =

{
φn(n) + 27n if φn(n) is defined,
n2 if φn(n) is undefined,

is another non-computable total function.
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Halting Problem

Now we define a function:

halt(computer program, input to computer program)

halt(prog, x) =

{
yes if prog halts on input x,

no if prog does not halt on input x.
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Computable function

Theorem: halt is uncomputable.

Proof. Assume halt is computable, then we can compute the

uncomputable f (i) (mentioned above) as follow.

First compute φ(i) = halt(prog, i),

{
If halt(prog, i) = no, output 0,
If halt(prog, i) = yes, simulate program with i and add 1 to answer,

So it is impossible. Thus halt is uncomputable.
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Basic Concepts

Let Σ = {a1, . . . , ak} be the set of symbols, called alphabet.

A string (word) from Σ is a sequence ai1 , · · · , ain of symbols from Σ.

Σ∗ is the set of all words/strings from Σ. (Kleene Star)

ε is the empty string, that has no symbols.
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Regular Expression (Type-3 Language)

Production Rules:

◦ A → a;

◦ A → aB;

◦ A → ε;

Type-3 grammar can be constructed based on Nondeterministic Finite

Automata (NFA).
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Context-Free Language (Type-2 Language)

Definition:

◦ T is alphabet subset (terminals)

◦ N is arbitrary string set (non-terminals, S is starting symbol);

◦ Q = {A → β, β ∈ (N ∪ T)+ ∪ {Λ}} (production set);

Example: T = {a, b, c}; N = {S,A,B},

Q = {S → AB; B → b; A → aA|c}
Derivation:

S ⇒ AB ⇒ aAB ⇒ aAb ⇒ aaAb ⇒ aacb

Parse Tree:

◦ A tree representing a derivation;

◦ All internal nodes are non-terminals;

◦ All leave nodes are terminals;

◦ Build a tree following derivation.
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Context-Sensitive Language (Type-1 Language)

Definition:

◦ T alphabet subset (terminals)

◦ N arbitrary string set (non-terminals, S is starting symbol);

◦ Q = {αAβ → αγβ}

⊲ Replace A by γ only if found in the context of α and β;

⊲ Left side does not have to be a single non-terminal;

⊲ α, β ∈ (N ∪ T)∗;

⊲ γ ∈ (N ∪ T)∗ − Λ.

Also Q includes all possible rules in type-2 grammar.

Corresponds to recursive language
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Recursively Enumerable Language (Type-0 Language)

Production Rules:

◦ Include all possible forms for the rules Type-3 to Type-1;

◦ Allow rules of the form: α → β

⊲ α ∈ (N ∪ T)∗N(N ∪ T)∗; (At least one non-terminal)

⊲ β ∈ (N ∪ T)∗.

Type-0 language includes all languages that are recognizable by

Tuning machine.
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Chomsky Schützenberger Hierarchy
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One-Tape Turing Machine

A Turing machine has five components:

1. A finite set {s1, . . . , sn} ∪ {⊲, ♯, ⊳} ∪ {✷} of symbols.

2. A tape consists of an infinite number of cells, each cell may store a

symbol.

· · ·✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷✷ · · ·

3. A reading head that scans and writes on the cells.

4. A finite set {qS, q1, . . . , qm, qH} of states.

5. A finite set of instructions (specification).
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One-Tape Turing Machine
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Turing Machines, Turing 1936

The input data

⊲s1
1 . . . s1

i1
✷ . . .✷sk

1 . . . sk
ik
⊳✷ · · ·

The reading head may write a symbol, move left, move right.

An instruction is of the form:

〈qi, sj〉 → 〈ql, sk, L〉,

which means when reads sj with state qi, the machine will turn to state

ql, replace sj with sk, and turn one cell to the left.

The direction can be L, R, or S, meaning move to left, right, or stay at

the current position.
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An Example

Given a Turing machine M with the alphabet {0, 1} ∪ {⊲,✷, ⊳}.

〈qS, ⊲〉 → 〈q1, ⊲,R〉
〈q1, 0〉 → 〈q1, 0,R〉
〈q1, 1〉 → 〈q2, 0, S〉
〈q2, 0〉 → 〈q2, 0,R〉
〈q2, 1〉 → 〈q1, 1,R〉
〈q1, ⊳〉 → 〈q3, ⊳, L〉
〈q2, ⊳〉 → 〈q3, ⊳, L〉
〈q3, 0〉 → 〈q3, 0, L〉
〈q3, 1〉 → 〈q3, 1, L〉
〈q3, ⊲〉 → 〈qH, ⊲,R〉

⊲ 1 1 0 1 ⊳

q̂S

⊲ 1 1 0 1 ⊳

q̂1

⊲ 0 1 0 1 ⊳

q̂2

⊲ 0 1 0 1 ⊳

q̂2

⊲ 0 1 0 1 ⊳

q̂1

⊲ 0 1 0 1 ⊳

q̂1

⊲ 0 1 0 0 ⊳

q̂2

⊲ 0 1 0 0 ⊳

q̂2

⊲ 0 1 0 0 ⊳

q̂3

⊲ 0 1 0 0 ⊳

q̂3

⊲ 0 1 0 0 ⊳

q̂3

⊲ 0 1 0 0 ⊳

q̂H
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Multi-Tape Turing Machine

A multi-tape TM is described by a tuple (Γ,Q, δ) containing

A finite set Γ called alphabet, of symbols. It contains a blank

symbol ✷, a start symbol ✄, and the digits 0 and 1.

A finite set Q of states. It contains a start state qstart and a halting

state qhalt.

A transition function δ : Q × Γk → Q × Γk−1 × L, S,Rk,

describing the rules of each computation step.

Example: A 2-Tape TM will have transition function (also named as

specification) like follows:

〈qs,✄,✄〉 → 〈q1,✄,R,R〉
〈q1, 0, 1〉 → 〈q2, 0, S, L〉
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Computation and Configuration

Computation, configuration, initial/final configuration
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A 3-Tape TM for the Palindrome Problem

A palindrome is a word that reads the same both forwards and

backwards. For instance:

ada, anna, madam, and nitalarbralatin.

Requirement: Give the specification of M with k = 3 to recognize

palindromes on symbol set {0, 1, ⊲, ⊳,✷}.
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Preparation

To recognize palindrome we need to check the input string, output 1 if

the string is a palindrome, and 0 otherwise.

Initially the input string is located on the first tape like

“⊲ 0110001 ⊳✷✷✷ · · · ", strings on all other tapes are “⊲✷✷✷ · · · ".

The head on each tape points the first symbol “⊲" as the starting state,

with state mark qS.

In the final state qF, the output of the kth tape should be “⊲ 1 ⊳✷" if

the input is a palindrome, and “⊲ 0 ⊳✷" otherwise.
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A 3-Tape TM for the Palindrome Problem

Q = {qs, qh, qc, ql, qt, qr}; Γ = {✷,✄,✁, 0, 1}; two work tapes.

Start State:

〈qs,✄,✄,✄〉 → 〈qc,✄,✄,R,R,R〉

Begin to copy:

〈qc, 0,✷,✷〉 → 〈qc, 0,✷,R,R, S〉
〈qc, 1,✷,✷〉 → 〈qc, 1,✷,R,R, S〉
〈qc,✁,✷,✷〉 → 〈ql,✷,✷, L, S, S〉

Return back to the leftmost:

〈ql, 0,✷,✷〉 → 〈ql,✷,✷, L, S, S〉
〈ql, 1,✷,✷〉 → 〈ql,✷,✷, L, S, S〉
〈ql,✄,✷,✷〉 → 〈qt,✷,✷,R, L, S〉

Begin to compare:

〈qt,✁,✄,✷〉 → 〈qr,✄, 1, S, S,R〉
〈qt, 0, 1,✷〉 → 〈qr, 1, 0, S, S,R〉
〈qt, 1, 0,✷〉 → 〈qr, 0, 0, S, S,R〉
〈qt, 0, 0,✷〉 → 〈qt, 0,✷,R, L, S〉
〈qt, 1, 1,✷〉 → 〈qt, 1,✷,R, L, S〉

Ready to terminate:

〈qr,✁,✄,✷〉 → 〈qh,✄,✁, S, S, S〉
〈qr, 0, 1,✷〉 → 〈qh, 1,✁, S, S, S〉
〈qr, 1, 0,✷〉 → 〈qr, 0,✁, S, S, S〉
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Single-Tape vs. Multi-Tape

The basic idea is to interleave k tapes into one tape.

The first n + 1 cells are reserved for the input.

Every symbol a of M is turned into two symbols a, â in M̃, with

â used to indicate head position.
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Single-Tape vs. Multi-Tape

The outline of the algorithm:

The machine M̃ places ✄ after the input string and then starts copying

the input bits to the imaginary input tape. During this process

whenever an input symbol is copied it is overwritten by ✄.

M̃ marks the n + 2-cell, . . ., the n + k-cell to indicate the initial head

positions.

M̃ Sweeps kT(n) cells from the (n + 1)-th cell to right, recording in

the register the k symbols marked with the hat _̂.

M̃ Sweeps kT(n) cells from right to left to update using the transitions

of M. Whenever it comes across a symbol with hat, it moves right k

cells, and then moves left to update.
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Unidirectional Tape vs. Bidirectional Tape

Define a bidirectional Turing Machine to be a TM whose tapes are

infinite in both directions.

Fact: If f : {0, 1}∗ → {0, 1}∗ is computable in time T(n) by a

bidirectional TM M, then it is computable in time 4T(n) by a TM M̃

with one-directional tape.
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Unidirectional Tape vs. Bidirectional Tape

The idea is that M̃ makes use of the alphabet Γ× Γ.

Every state q of M is turned into q̄ and q.
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Cantor Diagonal Method

Halting Problem and Language
Turing Machine

One-Tape Turing Machine
Multi-Tape Turing Machine
Computing Capacity for Difference Turing Machines

Unidirectional Tape vs. Bidirectional Tape

Let H range over {L, S, R} and let −H be defined by

−H =





R, if H = L,
S, if H = S,
L, if H = R.

M̃ contains the following transitions:

〈q, (✄,✄)〉 → 〈q, (✄,✄),R〉
〈q, (✄,✄)〉 → 〈q, (✄,✄),R〉

〈q, (a, b)〉 → 〈q′, (a′, b),H〉 if 〈q, a〉 → 〈q′, a′,H〉
〈q, (a, b)〉 → 〈q′, (a, b′),−H〉 if 〈q, b〉 → 〈q′, b′,H〉
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