Lab13－Algorithm

CS101－计算机科学导论课后作业，讲师：John Hopcroft， 2016 秋季学期

```
＊可打印本页直接在页面作答／附纸装订。标注您的 姓名：
``` \(\qquad\)

学号： \(\qquad\)班级： \(\qquad\) ＊电子版作业请直接上传到课程网站

Solve 3 of the following exercises．
1．Lexer and Parser are important components of a Compiler．A lexer converts the source code （a sequence of characters）into a sequence of tokens（a token could be generated by a Regular Expression），and a parser converts a sequence of tokens into a parse tree（which could be generated by a Context Free Grammar）．
Given the RE description of the tokens and the CFG of the programming language：
－Tokens：
```

                    assign : \(\leftarrow\)
    left_bracket : (
    right_bracket : )
operator : $+\mid-$
number : $[0-9]^{+}$
identifier : $[a-z A-Z 0-9]^{+}$

```
－CFG：
\begin{tabular}{rl}
PROGRAM & \(:\) \\
STATEMENT \\
\\
STATEMENT & \(:\) \\
EXPRESSION & \(:\) \\
& identifier assign EXPRESSION \(^{\text {identifier }}\) \\
& number \\
& left＿bracket EXPRESSION right＿bracket \\
& EXPRESSION operator EXPRESSION
\end{tabular}

And you need to use Dynamic Programming to parse the following program：
\[
\begin{aligned}
& a \leftarrow 1 \\
& b \leftarrow a-(a+a)
\end{aligned}
\]

You only need to write down the table used in DP．
HINT：Firstly，you need to convert the CFG to a Chomsky Normal Form one．
2．Construct a divide and conquer algorithm to rearrange the sequence \(1,2,3 \cdots, n\) that satisfies there is no arithmetic subsequence with length \(\geq 3\) ．

3．Prove the Master theorem．
Master Theorem：Let a be an integer greater than or equal to 1 and \(b\) be a real number greater than 1．Let \(c\) be a positive real number and \(d\) a nonnegative real number．Given a recurrence of the form
\[
T(n)= \begin{cases}a T(n / b)+n^{c} & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
\]
then for \(n\) a power of \(b\) ，
(a) if \(\log _{b} a<c, T(n)=\Theta\left(n^{c}\right)\),
(b) if \(\log _{b} a=c, T(n)=\Theta\left(n^{c} \log n\right)\),
(c) if \(\log _{b} a>c, T(n)=\Theta\left(n^{\log _{b} a}\right)\).
4. It is possible to perform multiplication of large numbers in (many) fewer operations than the usual brute-force technique of "long multiplication". As discovered by Karatsuba in 1962, multiplication of two \(n\)-digit numbers \(n u m_{1}\) and \(n u m_{2}\) can be done with a complexity less then \(O\left(n^{2}\right)\) using identities of the form
\[
A=\left(a+b \cdot 10^{\lceil n / 2\rceil}\right) \text { and } B=\left(c+d \cdot 10^{\lceil n / 2\rceil}\right) .
\]

Then
\[
A \cdot B=a c+[(a+b)(c+d)-a c-b d]] \cdot 10^{\lceil n / 2\rceil}+b d \cdot 10^{n} .
\]

Use the Master Theorem to give a bound of Karatsuba Algorithm.
5. Prove the Cut lemma:

Cut Lemma: Let \(X \subseteq T\) where \(T\) is an MST (Minimum Spanning Tree) in \(G(V, E)\). Let \(S \subseteq V\) such that no edge in \(X\) crosses between \(S\) and \(V-S\); i.e., no edge in \(X\) has one endpoint in \(S\) and one endpoint in \(V-S\). Among edges crossing between \(S\) and \(V-S\), let \(e\) be an edge of minimum weight. Then \(X \cup\{e\} \subseteq T^{\prime}\) where \(T^{\prime}\) is an MST in \(G(V, E)\).```

