Naming Conventions for Variables

Help Document for CS101-Introduction to Computer Science, Xiaofeng Gao, Fall 2014.

- 1. Small letters for elements and functions.
 - \bullet a, b, c for elements,
 - f, g for functions,
 - i, j, k for integer indices,
 - x, y, z for free variables,
 - \bullet English initial for variables with meanings, e.g., n for node, v for vertex.
- 2. Capital letters for sets. A, B, S. $A = \{a_1, \dots, a_n\}$
- 3. Bold small letters for vectors. $\mathbf{x}, \mathbf{y}, \mathbf{v} = \{v_1, \dots, v_m\}$
- 4. Bold capital letters for collections. A, B. $S = \{S_1, \dots, S_n\}$
- 5. Blackboard bold capitals for domains (standard symbols). \mathbb{N} , \mathbb{R} , \mathbb{Z} .
- 6. German script for collection of functions. $\mathscr{C}, \mathscr{S}, \mathscr{T}$.
- 7. Greek letters for parameters or coefficients. α , β , γ .
- 8. Some most common notational usages:
 - l and w for length and width of an object,
 - *n* denotes a fixed integer, such as a count of objects or the degree of an equation (When two integers are needed, for example for the dimensions of a matrix, one uses commonly *m* and *n*).
 - p often denotes a prime numbers or a probability.
 - q often denotes a prime power or a quotient.
 - r often denotes a remainder.
 - x, y and z usually denote the three Cartesian coordinates of a point in Euclidean geometry. By extension, they are used to name the corresponding axes..
 - z typically denotes a complex number, or, in statistics, a normal random variable.
 - α , β , γ , θ and ϕ commonly denote angle measures.
 - ε usually represents an arbitrarily small positive number (ε and δ commonly denote two small positives).
 - λ is used for eigenvalues.
 - σ often denotes a sum, or, in statistics, the standard deviation.
- 9. Double strike handwriting for bold letters.