CHAPTER

Mathematical Induction
and Recursive Definitions

2.1 | PROOFS

Aproof of a statement is essentially just a convincing argument that the statement is
true. Ideally, however, a proof not only convinces but explains why the statement is
true, and also how it relates to other statements and how it fits into the overall theory. A
typical step in a proof is to derive some statement from (1) assumptions or hypotheses,
(2) statements that have already been derived, and (3) other generally accepted facts,
using general principles of logical reasoning. In a very careful, detailed proof, we
might allow no “generally accepted facts” other than certain axioms that we specify
initially, and we might restrict ourselves to certain specific rules of logical inference,
by which each step must be justified. Being this careful, however, may not be feasible
or worthwhile. We may take shortcuts (“It is obvious that ...” or “It is easy to show
that ...”) and concentrate on the main steps in the proof, assuming that a conscientious
or curious reader could fill in the low-level details. \ ,

Usually what we are trying to prove involves a statement of the form p — ¢. A
direct proof assumes that the statement p is true and uses this to show ¢ is true.

The Product of Two Odd Integers Is Odd m

To prove: For any integers a and b, if a and b are odd, then ab is odd.

# Proof

We start by saying more precisely what our assumption means. An integer # is odd if there
exists an integer x so that # = 2x + 1. Now let @ and b be any odd integers. Then according
to this definition, there is an integer x so that @ = 2x + 1, and there is an integer y so that
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b = 2y + 1. We wish to show that there is an integer z so that ab = 2z + 1. Let us therefore
calculate ab:

ab=Q2x+1D2y+1
=4xy+2x +2y+1
=22xy+x+y)+1

Since we have shown that there is a z, namely, 2xy + x + Y, so thatab = 2z + 1, the proof is
complete. ‘

This is an example of a constructive proof. We proved the statement “There exists
z such that .. .” by constructing a specific value for z that works. A nonconstructive
proof shows that such a z must exist without providing any information about its
value. Such a proof would not explain, it would only convince. Although in some
situations this is the best we can do, people normally prefer a constructive proof if
one is possible. In some cases, the miethod of construction is interesting in its own
right. In these cases, the proof is even more valuable because it provides an algorithm
as well as an explanation. ; ‘

Since the statement we proved in Example 2.1 is the quantified statement “For
any integers a and b, ...,” it is important to understand that it is not sufficient to
give an example of g and b for which the statement is true. If we say “Leta = 45
and b = 11; then a = 2(22) + 1 and b = 2(5) + 2; therefore, ab = (2%2241)
Qx5+1) =...=2x24T7T+ 1,” we have proved nothing except that 45 * 11 is
odd. Finding a value of x so that the statement P () is true is a proof of the statement
“There exists x such that P (x).” Finding a value of x for which P (x) isfalse disproves
the statement “For every x, P(x)” (o, if you prefer, proves the statement “It is not
the case that for every x, P(x)”); this is called a proof by counterexample. To prove
“For every x, P (x),” however, requires that we give an argument in which there are
no restrictions on x. (Let us return briefly to the example with 45 and 11. Itis not
totally unreasonable to claim that the argument beginning “Let a = 45 and b =117
is a proof of the quantified statement—after all, the algebraic steps involved are the
same as the ones we presented in our official proof. The crucial point, however, is that
there is nothing special about 45 and 11. Someone who offers this as a proof should
at least point out that the same argument would work in general. For an argument
this simple, such an observation may be convincing; even more convincing is an
argument involving a and b like the one we gave originally.)

The alternative to a direct proof is an indirect proof, and the simplest form of
indirect proof is a proof by contrapositive, using the logical equivalence of p — ¢
and —q — —p. ‘ ‘

A Proof by Contrapositive

To prove: For any positive integers i, j, and n,if i % j =n, then either i < A/ or j < /0.
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@ Proof
The statement we wish to prove is of the general form “For every x, if p(x), then g(x).” For
each x, the statement “If p(x) then g (x)” is logically equivalent to “If not g (x) then not p(x),”
and therefore (by a general principle of logical reasoning) the statement we want to prove is
equivalent to this: For any positive integers i, j, and », if it is not the case that i < /1 or
j < /n, theni* j #n.

Ifitis not true thati < /nor j < /n,theni > /n and j > /n. A generally accepted
fact from mathematics is that if  and b are numbers with a > b, and c is a number > 0, then
ac > be. Applying this to the inequality / > /n with ¢ = j, we obtaini * j > /i j. Since
n > 0, we know that ./ > 0, and we may apply the same fact again to the inequality j > /n,
this time letting ¢ = /1, to obtain j/n > \/n\/n =n. Wenow havei * j > j/n > n, and
it follows that i % j # n.

The second paragraph in this proof illustrates the fact that a complete proof, with no details
left out, is usually not feasible. Even though the statement we are proving here is relatively
simple, and our proof includes more detail than might normally be included, there is still a lot
left out. Here are some of the details that were ignored:

1. =(p Vv q) is logically equivalent to —p A —g. Therefore, if it is not true that i < /1 or
j</mtheni £ Jnand j £ /n.

2. 'For any two real numbers a and b, exactly one of the conditions @ < b, @ > b, anda = b
holds. (This is a generally accepted fact from mathematics.) Therefore, if i £ /7, then
i > +/n, and similarly for j.

3. Forany two real numbers a and b, a % b = b % a. Therefore, ,/n * j = j/n.

4. The > relation on the set of real numbers is transitive. Therefore, from the fact that
i %] > jynand j/n > nitfollows that i % j > n.

Even if we include all these details, we have not stated explicitly the rules of inference
we have used to arrive at the final conclusion, and we have used a number of facts about real
numbers that could themselves be proved from more fundamental axioms. In presenting a
proof, one usually tries to strike a balance: enough left out to avoid having the minor details
obscure the main points and put the reader to sleep, and enough left in so that the reader will
be convinced.
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A variation of proof by contrapositive is proof by contradiction. In its most
general form, proving a statement p by contradiction means showing that if it is not
true, some contradiction results. Formally, this means showing that the statement
—p = false is true. It follows that the contrapositive statement true — p is true, and
this statement is logically equivalent to p. If we wish to prove the statement p—>q
by contradiction, we assume that p — g is false. Because of the logical equivalence
of p — g and —p V g, this means assuming that =(—p v q), or p A—gq,is true. From
this assumption we try to derive some statement that contradicts some statement we
know to be true—possibly p, or possibly some other statement.
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mﬁ Is Irrational

A real number x is rational if there are two integers m and n so that x = m/n. We present
one of the most famous examples of proof by contradiction: the proof, known to the ancient
Greeks, that 4/2 is irrational.

B Proof

Suppose for the sake of contradiction that /2 is rational. Then there are integers m’ and n’
with /2 = m’/n’. By dividing both m’ and »’ by all the factors that are common to both, we
obtain +/2 = m/n, for some integers m and n having no common factors. Since m/n = /2,
m = nv/2. Squaring both sides of this equation, we obtainm? = 2n2, and therefore m? is even
(divisible by 2). The result proved in Example 2.1 is that for any integers a and b, if @ and b are
odd, then ab is odd. Since a conditional statement is logically equivalent to its contrapoéitive,
we may conclude that for any a and b, if ab is not odd, then either a is not odd or b is not odd.
However, an integer is not odd if and only if it is even (Exercise 2.21), and so for any a and b,
if ab is even, then a or b is even. If we apply this when a = b = m, we conclude that since
m? is even, m must be even. This means that for some k, m = 2k. Therefore, (2k)* = 2n2.
Simplifying this and canceling 2 from both sides, we obtain 2k2 = n?. Therefore, n* is even.
The same argument that we have already used shows that 72 must be even, and so n = 2j for
some j. We have shown that m and n are both divisible by 2. This contradicts the previous
statement that m and n have no common factor. The assumption that /2 is rational therefore
leads to a contradiction, and the conclusion is that /2 is irrational.

MAnother Proof by Contradiction

To prove: For any sets A, B,and C,if AN B = @andC C B,then ANC =0.

H Proof

Again we try a proof by contradiction. Suppose that A, B, and C are sets for which the
conditional statement is false. Then ANB =@, C € B,and ANC s (. Therefore, there
exists x withx € ANC,sothatx € Aandx € C. Since C & B and x € C, it follows
that x € B. Therefore, x € A N B, which contradicts the assumption that A N B = @. Since
the assumption that the conditional statement is false leads to a contradiction, the statement is
proved.

There is not always a clear line between a proof by contrapositive and one by
contradiction. Any proof by contrapositive that p — g is true can easily be refor-
mulated as a proof by contradiction. Instead of assuming that —g is true and trying
to show —p, assume that p and —q are true and detive —p; then the contradiction is
that p and —p are both true. In the last example it seemed slightly easier to argue
by contradiction, since we wanted to use the assumption that C € B. A proof by
contrapositive would assume that A N C # ¢ and would try to show that

~((ANB =) A(C S B))
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This approach seems a little more complicated, just because the formula we are trying
to obtain is more complicated. ’ ‘

It is often convenient (or necessary) to use several different proof techniques
within a single proof. Although the overall proof in the following example is not a
proof by contradiction, this technique is used twice within the proof,

There Must Be a Prime Between n and nlm

For a positive integer # the number n! is defined to be the productn s (n — 1) % .- - %2 % 1 of all
the positive integers less than or equal to n. To prove: For any integer n > 2, there is a prime
p satisfyingn < p < nl,

B Proof

Since n > 2, two distinct factors in n! are n and 2. Therefore, n! > 2n =n+n >n+ 1, and
thus n! — 1 > n. The number n! — 1 must have a factor p that is a prime. (See Example 1.2
for the definition of a prime. The fact that every integer greater than 1 has a prime factor is a
basic fact about positive integers, which we will prove in Example 2.11.) Since p is a divisor
ofnl — 1, p < nl— 1 < nl. This gives us one of the inequalities we need. To show the other
one, suppose for the sake of contradiction that p < n. Then since p is one of the positive
integers less than or equal to n, p is a factor of n!. However, p cannot be a factor of both n! and
nl— 1;if it were, it would be a factor of 1, their difference, and this is impossible. Therefore,
the assumption that p < n leads to a contradiction, and we may conclude thatn < p < n!.

Another useful technique is to divide the proof into separate cases; this is illus-
trated by the next example.

Strings of Length 4 Contain Substrings yy m

1o prove: Bvery string x in {0, 1}* of length 4 contains a nonnull substring of the form yy.

E Proof

‘We can show the result by considering two separate cases. If x contains two consecutive 0’s
or two consecutive 1°s, then the statement is true for a string y of length 1. In the other case,
any symbol that follows a 0 must be a 1, and vice versa, so that x must be either 0101 or 1010.
The statement is therefore true for a string y of length 2.

Even though the argument is simple, let us state more explicitly the logic on which it
depends. We want to show that some proposition P is true. The statement P is logically
equivalent to true — P. If we denote by p the statement that x contains two consecutive 0’s
or two consecutive 1’s, then p v —p is true. This means frue —> P is logically equivalent to

(pvV—-p)—>P
which in turn is logically equivalent to

(p—> PYA(—p— P)
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This last statement is what we actually prove, by showing that each of the two separate condi-
tional statements is true.

In this proof, there was some choice as to which cases to consider. Aless efficient approach
would have been to divide our two cases into four subcases: (i) x contains two consecutive 0's;
(and so forth). An even more laborious proof would be to consider the 16 strings of length 4
individually, and to show that the result is true in each case. Any of these approaches is valid,
as long as our cases cover all the possibilities and we can complete the proof in each case.

The examples in this section provide only a very brief introduction to proofs.
Learning to read proofs takes a lot of practice, and creating your own is even harder.
One thing that does help is to develop a critical attitude. Be skeptical. When you )
read a step in a proof, ask yourself, “Am I convinced by this?” When you have
written a proof, read it over as if someone else had written it (it is best to read aloud
if circumstances permit), and as you read each step ask yourself the same question.

2.2 | THE PRINCIPLE OF MATHEMATICAL
INDUCTION

Very often, we wish to prove that some statement involving a natural number 7 is true
for every sufficiently large value of n. The statement might be a numerical equality:

n
Y i=nm+1)/2
L . =1

The number of subsets of {1,2,...,n}is 2",
It might be an inequality:
nl>2"

It might be some other assertion about 7, or about a set with n elements, or a string
of length n:

There exist positive integers j and k so thatn = 3j + 7k.
Every language with exactly n elements is regular.
If x € {0, 1}*, |x| = n, and x = Oy1, then x contains the substring 01.

(The term regular is defined in Chapter 3.) In this section, we discuss a common
approach to proving statements of this type. ;

In both the last two examples, it might seem as though the explicit mention of n
makes the statement slightly more awkward. It would be simpler to say, “Every finite
language is regular,” and this statement is true; it would also be correct to let the last
statement begin, “For any x and y in {0, 1}*,ifx = 0y1, ... . However, in both cases
the simpler statement is equivalent to the assertion that the original statement is true
for every nonnegative value of r, and formulating the statement so that it involves n
will allow us to apply the proof technique we are about to discuss.
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The Sum of the First n Positive Integers
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We begin with the first example above, expressed withdut the summatiori notation:
1424+ -4+n=n@r+1/2

This formula is supposed to hold for every n > 1; however, it makes sense to consider it for
n=0as well if we interpret the left side in that case to be the empty sum, which by deﬁnltlon
is 0. Let us therefore try to prove that the statement is true for every n > 0,

How do we start? Unless we have any better ideas, we might very well begin by writing
out the formula for the first few values of n, to see if we can spot a pattern.

n=0: 0=00+1)/2
n=1: 0+1:1(1~j—1)/2
n=2: 0+1+2=22+1)/2
n=3: 04+1424+3=33+1)/2

n=4: 04+14+2+43+4=4¢4+1)/2

As we are verifying these formulas, we probably realize after a few lines that in checking a
specific case, say n = 4, it is not necessary to do all the arithmetic on the left side: 0+ 1+2+
3 -+ 4. We can take the left side of the previous formula, which we have already calculated,
and add 4. When we calculated 0 + 1 + 2 + 3, we obtained 3(3 + 1) /2. So our answer for
n=4is

33+1)/2+44=43/2+ 1D =43 +2)/2=4G4+1)/2

which is the one we wanted. Now that we have done this step, we can take care of n = 5 the
same way, by taking the sum we just obtained for n = 4 and adding 5:

44+1)/245=5@/2+1) =5A+2)/2=5(5+1)/2

These two calculations are similar—in fact, this is the pattern we were looking for, and we can
probably see at this point that it will continue. Are we ready to write our proof?

& Example 2.7. Proof Number 1
To show
O+142+ - -+n=nn+1)/2 foreveryn > 0
n=0: 0=00+1)/2
n=1: 0+1=00+1)/241 (by using the result for n = 0)
=10/2+1)
=1(0+2)/2
=114+1)/2
n=2: 0+142=101+1)/2+2 (by using the result forn = 1)
=2(1/2+1)
=2(142)/2
=22+ 1)/2
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n=3: 0+1+42+3=22+1)/2+3 (by using the result for n =2)
=32/2+ 1
=32+2)/2
=33+1)/2

Since this pattern continues indefinitely, the formula is true for every n = 0.

Now let us criticize this proof. The conclusion, “the formula is true for every
n > 0,” is supposed to follow from the fact that “this pattern continues indefinitely.”
The phrase “this pattern” refers to the calculation that we have done three. times, to..
derive the formula for 7 = 1 from n = 0, for n = 2 from # = 1, and for n = 3 from
n = 2. There are at least two clear deficiencies in the proof. One is that we have
not said explicitly what “this pattern” is. The second, which is more serious, is that
we have not made any attempt to justify the assertion that it continues indefinitely.
In this example, the pattern is obvious enough that people might accept the assertion
without much argument. However, it would be fair to say that the most important
statement in the proof is the one for which no reasons are given!

Our second version of the proof tries to correct both these problems at once: to -
describe the pattern precisely by doing the calculation, not just for three particular
values of n but for an arbitrary value of n, and in the process, to demonstrate that the
pattern does not depend on the value of n and therefore does continue indefinitely.

B Eg(ample 2.7. Proof Number 2
To show ‘

0+14+2+--+n=n(m+1)/2 foreveryn > 0
n=0: 0=00+1)/2 o
n=1: 0+1=00+1)/2+1 (byusing the result forn'= )
=10/2+1) | '
=1(0+2)/2
=1(1+1)/2

n=2: 0+1+2=1(1+1)/24+2 (by using the result for n = 1)
=2(1/2+1) | '
=2(1+2)/2
=22+ 1)/2

n=73: 04+1+2+3=22+1)/2+3 (by using the result forn = 2)
=32241) " '
=3(2+2)/2
=33+1)/2

In general, for any value of k > 0, the formula forn = &k + 1 can be derived from the one
for n = k as follows: ' /
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0+1+2+--+k+1D)=0+1+ ---+B)+ K+ 1D
- =k(k+1)/24+ (k+1) (from the result for n = k)
=+ Dk/24+1)
= (k+ D(k+2)/2
=k+D(k+1)+1)/2

Therefore, the formula holds for every n > 0.
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We might now say that the proof has more than it needs. Presenting the calcu-
lations for three specific values of n originally made it easier for the reader to spot
the pattern; now, however, the pattern has been stated explicitly. To the extent that
the argument for these three specific cases is taken to be part of the proof, it obscures
the two essential parts of the proof: (1) checking the formula for the initial value
of n, n = 0, and (2) showing in general that once we have obtained the formula for
one value of n (n = k), we can derive it for the next value (n = k + 1). These two
facts together are what allow us to conclude that the formula holds for every n > 0.
Neither by itself would be enough, (On one hand, the formula for n = 0, or even
for the first million values of #, might be true just by accident. On the other hand, it
would not help to know that we can always derive the formula for the case n = k -+ 1
from the one for the case n = k, if we could never get off the ground by showing that
it is actually true for some starting value of k.)

_ The principle that we have used in this example can now be formulated in general.

The Principle of Mathematical Induction :

]

A proof by induction is an application of this principle. The two parts of such
a proof are called the basis step and the induction step. In the induction step, we
assume that k is a number > no and that the statement P(n) is true in the case n = k;
we call this assumption the induction hypothesis. Let us return to our example one
last time in order to illustrate the format of a proof by induction.

B Example 2.7. Proof Number 3 (by mductlon)
Let P(n) be the statement

142434+ - +n=nn+1)/2
To show that P () is true for every n > 0.

- Basis step. We must show that P(0) is true. P(0) is the statement 0 = 000+ 1)/2, aﬁd
this is obviously true.
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Induction hypothesis.
k>0 and 1+2+43+---+k=kk+1)/2
Statement to be shown in mductmn step. .
142434+ +Gk+D) = (k+l)((k+l)+1)/2
Proof of induction step.
1+2+3+ A k+D =042+ +R+ELD
=kk+1)/2+ (k +4+1) (by the induction hypothe31s)
=(k+Dk/2+1)
=((k+Dk+2)/2
=k+DGk+D+1)/2

Whether or not you follow this format exactly, it is advisable always to include
in your proof explicit statements of the following:

B The general statement involving n that is to be proved.

- The statement to wh1ch it reduces in the basis step (the general staterent, but
with ng substituted for 7).

B The induction hypothesis (the general statement, with k substltuted forn, and
preceded by “k > no, and”).

B +The statement to be shown in the induction step (w1th k 4 1 substituted for n).

B The pomt during the induction step at which the induction hypothes1s is used.

The advantage of formulating a general pnnc1ple of induction is that it supplies
a general framework for proofs of this type. If you read in a journal article the phrase
“It can be shown by induction that . ..,” even if the details are missing, you can
supply them Although including these ﬁve itéms explicitly may seem laborious at
first, the advantage is that it can help you to clarify for yourself exactly what you are
trying to do in the proof. Very often, once you have gotten to this point, filling in the
remaining detaJls isa stra1ghtforward process.

Strings of the Form 0y1 Must Contain the Substring 01

EXAMPLE 2.8

Let us prove the following statement: For any x € {0, 1}, if x begins with 0 and ends with 1
@i.e., x = Oyl for some strmg y) then x must contain the substrmg 01.

You may wonder whether this statement requires an induction proof; let us begin with
an argument that does not involve induction, at least explicitly. If x = Oy1 for some string
y € {0, 1}*, then x must contain at least one 1. The ﬁrst 1 in x cannot occur at the begmnmg,
since x starts with 0; therefore, the first 1 must be immediately preceded bya0, which means
that x contains the substring 01. Tt would be hard to imagine a proof much simpler than
this, and it seems convincing. It is interesting to observe, however, that this proof uses a fact
about natural numbers (every nonempty subset has a smallest element) that is equivalent to
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the principle of mathematical induction. We will return to this statement later, when we have
a slightly modified version of the induction principle. See Example 2.12 and the discussion
before that example.

In any case, we are interested in illustrating the principle of induction at least as much
as in the result itself. Let us try to construct an induction proof. Our initial problem is that
mathematical induction is a way of proving statements of the form “For every n > n,,...,”
4and our statement is not of this form. This is easy to fix, and the solution was suggested at
the beginning of this section. Consider the statement P (n): If |x| = n and x = Oy1 for some
string y € {0, 1}*, then x contains the substring 01. In other words, we are introducing an
integer n into our statement, specifically in order to use induction. If we can prove that P (n) is
true for every n > 2, it will follow that the original statement is true. (The integer we choose is
the length of the string, and we could describe the method of proof as induction on the length
of the string. There are other possible choices; see Exercise 2.6.)

In the basis step, we wish to prove the statement “If |x| = 2 and x = Oyl for some
string y € {0, 1}*, then x contains the substring 01.” This statement is true, because if x| = 2
and x = Oyl, then y must be the null string A, and we may conclude that x = 01. Qur
induction hypothesis will be the statement: & > 2, and if |x| = k and x = 0y1 for some
string y € {0, 1}*, then x contains the substring 01. In the induction step, we must show: if
|x}=k <+ 1 and x = Oy1 for some y € {0, 1}*, then x contains the substring 01. (These three
statements are obtained from the original statement P (n) very simply: first, by substituting 0
for n; second, by substituting & for n, and adding the phrase “k > 2, and” at the beginning;
third, by substituting k + 1 for n. These three steps are always the same, and the basis step
is often as easy to prove as it is here. Now the mechanical part is over, and we must actually
think about how to continue the proof!)

‘We have a string x of length k + 1, about which we want to prove something. We have an
induction hypothesis that tells us something about certain strings of length k, the ones that begin
with 0 and end with 1. In order to apply the induction hypothesis, we need a string of length & to
apply it to. We can get a string of length & from x by leaving out one symbol. Letus try deleting
the initial 0. (See Exercise 2.5.) The remainder, y1, is certainly a string of length k, and we
know that it ends in 1, but it may not begin with 0—and we can apply the induction hypothesis
only to strings that do. However, if y1 does not begin with 0, it must begin with 1, and in this
case x starts with the substring 01! If y1 does begin with 0, then the induction hypothesis tells
us that it must contain the substring 01, so that x = Oy1 must contain the substring too,

Now that we have figured out the crucial steps, we can afford to be a little more concise in
our official proof. We are trying to prove that for every n > 2, P(n) is true, where P (n) is the
statement: If |x} = n and x = Oyl for some string y € {0, 1}*, then x contains the substring
01.

Basis step. We must show that the statement P (2) is true. P(2) says that if |x| = 2 and
x = Oy for some y € {0, 1}*, then x contains the substring 01. P(2) is true, because if
|x| = 2 and x = Oy1 for some y, then x = 0O1. ‘

Induction hypothesis. k > 2 and P (k); in other words, if |x| = k and x = Oy1 for
some y € {0, 1}*, then x contains the substring 01,

Statement to be shown in induction step. P (k + 1); that is, if |x| = k + 1 and

x = 0yl for some y € {0, 1}*, then x contains the substring 01.
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Proof of induction step. Since |x| = k -+ 1 and x = 0y1, |yl| = k. If y begins with 1,
then x begins with the substring 01. If y begins with 0, then y1 begins with 0 and ends
with 1; by the induction hypothesis, y contains the substring 01, and therefore x does
also.

Verifying a Portion of a Program

The program fragment below is written in pseudocode. Lowercase letters represent constants,
uppercase letters represent variables, and the constant n is assumed to be nonnegative:

Y = 1;

for I =1 ton
Y =Y * x;

write(Y);

We would like to show that when this code is executed, the value printed out is x”. We do this
in a slightly roundabout way, by introducing a new integer j, the number of iterations of the
loop that have been performed. Let P () be the statement that the value of Y after j iterations
is x7. The result we want will follow from the fact that P(j) is true for any j > 0, and the fact
that “Por I = 1 to n” results in n iterations of the loop.

Basis step. P(0) is the statement that after 0 iterations of the loop, ¥ has the value x°,
This is true because Y receives the initial value 1 and after O iterations of the loop its
value is unchanged.

Inductive hypothesis. k > 0, and after k iterations of the loop the value of ¥ is x*.

Statement to be proved in induction step. After k + 1 iterations of the loop, the value
of ¥ is x*+1,

Proof of induction step. The effect of the assignment statement ¥ = Y * x is to replace
the old value of ¥ by that value times x; therefore, the value of Y after any iteration is x
times the value before that iteration. Since x * x* = x**1, the proof is complete.

Although the program fragment in this example is very simple, the example
should suggest that the principle of mathematical induction can be a useful technique
for verifying the correctness of programs. For another example, see Exercise 2.56.

You may occasionally find the principle of mathematical induction in a dis guised
form, which we could call the minimal counterexample principle. The last example
in this section illustrates this.

A Proof Using the Minimal Counterexample Principle

To show: For every integer n > 0, 5" — 2" is divisible by 3.

Just as in an ordinary induction proof, we begin by checking that P(n} is true for the
starting value of n. This is true here, since 50— 29 =1—1=0,and 0 is divisible by 3. Now
if it is not true that P (r) is true for every n > 0, then there are values of  greater than or equal
to O for which P(n) is false, and therefore there must be a smallest such value, say n = k.
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(See Example 2.12.) Since we have verified P(0), k must be at least 1. Therefore, k — 1 is at
feast 0, and since k is the smallest vatue for which P fails, P(k — 1) is true. This means that
gk-1 . 2k—1 jg a multiple of 3, say 3. Then, however,

sF 2k =545 2520l =34 ST 1 2u (B - 2y =345 12 %35

This expression is divisible by 3. We have derived a contradiction, which allows us to conclude
that our original assumption is false. Therefore, P (n) is true for every n > 0.
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You can probably see the similarity between this proof and one that uses the
principle of mathematical induction. Although an induction proof has the advantage
that it does not involve proof by contradiction, both approaches are equally valid.
Not every statement involving an integer n is appropriate for mathematical in-
duction. Using this technique on the statement

Q"+DER' -1 =2"—-1

would be silly because the proof of the induction step would not require the induction
hypothesis at all. The formula for n = k + 1, or for any other value, can be obtained
immediately by expanding the left side of the formula and using laws of exponents.
The proof would not be a real induction proof, and it would be misleading to classify
it as one.

A general rule of thumb is that if you are tempted to use a phrase like “Repeat this
process for each n,” or “Since this pattern continues indefinitely” in a proof, there
i$ a good chance that the proof can be made more precise by using mathematical
induction. When you encounter one of these phrases while reading a proof, it is very
likely a substitute for an induction argument. In this case, supplying the details of the
induction may help you to understand the proof better.

2.3 | THE STRONG PRINCIPLE OF
MATHEMATICAL INDUCTION

Sometimes, as in our first example, a proof by mathematical induction is called for,
but the induction principle in Section 2.2 is not the most convenient tool.

Integers Bigger Than 2 Have Prime Factorizations

Recall that a prime is a positive integer, 2 or bigger, that has no positive integer divisors except
itself and 1. Part of the fundamental theorem of arithmetic is that every integer can be factored
into primes. More precisely, let P (i) be the statement that n is either prime or the product of
two or more primes; we will try to prove that P (n) is true for every n > 2.

The basis step does not present any problems. P(2) is true, since 2 is a prime. If we
pioceed as usual, then we take as the induction hypothesis the statement that k > 2 and k is
cither prime or the product of two or more primes. We would like to show that k + 1 is either
prime or the product of primes. If k -+ 1 happens to be prime, there is nothing left to prove.
Otherwise, by the definition of prime, & + 1 has some positive integer divisor other than itself
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and 1. This means k 4+ 1 = r % s for some positive integers r and s, neither of which is 1 or
k + 1. It follows that » and s must both be greater than 1 and less than k + 1.

In order to finish the induction step, we would like to show that » and s are both either
primes or products of primes; it would then follow, since k + 1 is the product of r and s, that
k + 1 is a product of two or more primes. Unfortunately, the only information our induction
hypothesis gives us is that k is a prime or a product of primes, and this tells us nothing about
rors.

Consider, however, the following intuitive argument, in which we set about verifying the
statement P (n) one value of n at a time:

2 is a prime.

3 is a prime.

4 =2 %2, which is a product of primes since P (2) is known to be true.

5 is a prime.

6 = 2 % 3, which is a product of primes since P(2) and P (3) are known to be true.

7 is a prime.

8 = 2 % 4, which is a product of primes since P (2) and P (4) are known to be true.

9 = 3 % 3, which is a product of primes since P (3) is known to be true.

10 = 2 % 5, which is a product of primes since P (2) and P(5) are known to be true.

11 is a prime.

12 = 2 * 6, which is a product of primes since P (2) and P (6) are known to be true.

This seems as convincing as the intuitive argument given at the start of Example 2.7, Further-
more; we can describe explicitly the pattern illustrated by the first 11 steps: For each k > 2,
either k + 1 is prime or it is the product of two numbers r and s for which the proposition P
has already been shown to hold.

The difference between the pattern appearing here and the one we saw in Example 2.7
is this: At each step in the earlier example we were able to obtain the truth of P(k + 1) by
knowing that P (k) was true, and here we need to know that P holds, not only for k but also
for all the values up to k. The following modified version of the induction principle will allow
our proof to proceed.

The Strong Principle of Mathematlcal Inductlon

nti olving amntegern Thento prove tha P(n)
; to show these tw thm :
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To use this principle in a proof, we follow the same steps as before except for the
way we state the induction hypothesis. The statement here is that k is some integer
> and that all the statements P(ng), P(ng + 1),..., P(k) are true. With this
change, we can finish the proof we began earlier.

m Example 2.11. Proof by mductlon.

To show: P(n) is true for every n > 2, where P (n) is the statement: 7 is either a prime or a
product of two or more primes.

Basis step. P(2) is the statement that 2 is either a prime or a product of two or more
primes. This is true because 2 is a prime.

Induction hypothesis. k > 2, and for every n with 2 < n < k, n is either prime or a
product of two or more primes.

Statement to be shown in lnductlon step. k + 1 is either prime or a product of two or
more primes.

Proof of induction step. We consider two cases. If & + 1 is prime, the statement
P(k+1) is true, Otherwise, by definition of a prime, k 4 1 = r % s, for some positive
integers r and s, neither of which is 1 or & -+ 1. It follows that 2 <r<kand2<s <k
Therefore, by the induction hypothesis, both 7 and s are either prime or the product of
two or more primes. Therefore, their product & + 1 is the product of two or more primes,
and P(k + 1) is true. '
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The strong principle of induction is also referred to as the principle of complete
induction, or course-of- “values induction. The first example suggests that it is as plau-
sible intuitively as the ordinary induction principle, and in fact the two are equivalent.
As to whether they are true, the answer may seem a little surprising. Neither can be
proved using other standard properties of the natural numbers. (Neither can be dis-
_ proved, either!) This means, in effect, that in order to use the induction principle, we
must adopt it as an axiom. A well-known set of axioms for the natural numbers, the
Peano axioms, includes one similar to the induction principle.

Twice in Section 2.2 we had occasion to use the well-ordering principle for the
natural numbers, which says that every nonempty subset of A/ has a smallest element.
As obvious as this statement probably seems, it is also impossible to prove without
using induction or something comparable. In the next example, we show that it
follows from the strong principle of induction. (It can be shown to be equivalent.)

The Well-ordering Principle for the Natural Numbers

To prove: Bvery nonempty subset of AV, the set of natural numbers, has a smallest element.
(What we are actually proving is that if the strong principle of mathematical induction i is true,
then every nonempty subset of A/ has a smallest element.)

First we need to find a way to express the result in the form “For every n > ng, P(n).”
Every nonempty subset A of A contains a' natural number, say n. If every subset of A/

EXAMPLE 2.12
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containing n has a smallest element, then A does. With this in mind, we let P(n) be the
statement “Every subset of A/ containing » has a smallest element.” We prove that P(n) is
true for every n > 0. (See Exercise 2.7.)

Basis step. P(0) is the statement that every subset of N containing 0 has a smallest
element. This is true because 0 is the smallest natural number and therefore the smallest
element of the subset.

Induction hypothesis. k > 0, and for every n with 0 < n < k, every subset of N
containing » has a smallest element. (Put more simply, & > 0 and every subset of N/
containing an integer less than or equal to k has a smallest element.)

Statement to be shown in induction step. Every subset of A/ containing k + 1 has a
smallest element.

Proof of induction step. Let A be any subset of A" containing k + 1. We consider two
cases. If A contains no natural number less than k + 1, then k + 1 is the smallest
element of A. Otherwise, A contains some natural number n withn < k. In this case, by
the induction hypothesis, A contains a smallest element.

The strong principle of mathematical induction is more appropriate here, since
when we come up with an » to which we want to apply the induction hypothesis, all
we know about z is that n < k. We do not know thatn = k. It may not be obvious at
the beginning of an induction proof whether the strong induction principle is required
or whether you can get by with the original version. You can avoid worrying about
this by always using the strong version. It allows you to adopt a stronger induction
hypothesis, and so if an induction proof is possible at all, it will certainly be possible
with the strong version. In any case, you can put off the decision until you reach the
point where you have to prove P (k + 1). If you can do this with only the assumption
that P (k) is true, then the original principle of induction is sufficient. If you need
information about earlier values of n as well, the strong version is needed.

We will see more examples of how the strong principle of mathematical induction
is applied once we have discussed recursive definitions and the close relationship
between them and mathematical induction. '

2.4 RECURSIVE DEFINITIONS

2.4.1 Recursive Definitions of Functions with
Domain N ‘

The chances are that in a programming course you have seen a translation into some .
high-level programming language of the following definition:

t ifn =0
T=lakm—10! ifn>0

This is one of the simplest examples of a recursive, or inductive, definition. It defines
the factorial function on the set of natural numbers, first by defining the value at 0,
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