Proof

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

October 31, 2016

- Formal Description
 - Definition
 - Categories
- Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

- Formal Description
 - Definition
 - Categories
- Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

What is proof?

A proof of a statement is essentially a convincing argument that the statement is true. A typical step in a proof is to derive statements from

- assumptions or hypotheses.
- statements that have already been derived.
- other generally accepted facts, using general principles of logical reasoning.

- Formal Description
 - Definition
 - Categories
- 2 Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

Types of Proof

- Proof by Construction
- Proof by Contrapositive
 - Proof by Contradiction
 - Proof by Counterexample
- Proof by Cases
- Proof by Mathematical Induction
 - The Principle of Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction

- Formal Description
 - Definition
 - Categories
- Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

Example: For any integers a and b, if a and b are odd, then ab is odd.

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since *a* and *b* are odd, there exist integers *x* and *y* such that a = 2x + 1, b = 2y + 1.

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer z so that ab = 2z + 1. Let us therefore consider ab.

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer z so that ab = 2z + 1. Let us therefore consider ab.

$$ab = (2x+1)(2y+1)$$

$$= 4xy + 2x + 2y + 1$$

$$= 2(2xy + x + y) + 1$$

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer z so that ab = 2z + 1. Let us therefore consider ab.

$$ab = (2x+1)(2y+1)$$

= $4xy + 2x + 2y + 1$
= $2(2xy + x + y) + 1$

Thus if we let z = 2xy + x + y, then ab = 2z + 1, which implies that ab is odd.

- Formal Description
 - Definition
 - Categories
- Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Proof: We change this statement by its logically equivalence:

 $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$.

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$.

 $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$

If it is not true that $i \le \sqrt{n}$ or $j \le \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$.

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Proof: We change this statement by its logically equivalence:

$$\forall i, j, n \in \mathbb{N}$$
, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$.

If it is not true that $i \le \sqrt{n}$ or $j \le \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$.

Since $j > \sqrt{n} \ge 0$, we have

$$i > \sqrt{n} \Rightarrow i \times j > \sqrt{n} \times j > \sqrt{n} \times \sqrt{n} = n.$$

It follows that $i \times j \neq n$. The original statement is true.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists x with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists x with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists x with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Therefore $x \in A \cap B$, which contradicts the assumption that $A \cap B = \emptyset$.

- Formal Description
 - Definition
 - Categories
- Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: n is even and n is odd.

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: n is even and n is odd.

Case 1. *n* is even. Let n = 2k, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k)^{2} + 2k + 14$$

= $12k^{2} + 2k + 14$
= $2(6k^{2} + k + 7)$

Since $6k^2 + k + 7$ is an integer, $3n^2 + n + 14$ is even if *n* is even.

Proof by Cases (Cont.)

Case 2. *n* is odd. Let n = 2k + 1, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k+1)^{2} + (2k+1) + 14$$

$$= 3(4k^{2} + 4k + 1) + (2k+1) + 14$$

$$= 12k^{2} + 12k + 3 + 2k + 1 + 14$$

$$= 12k^{2} + 14k + 18$$

$$= 2(6k^{2} + 7k + 9)$$

Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if *n* is odd.

Proof by Cases (Cont.)

Case 2. *n* is odd. Let n = 2k + 1, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$$

$$= 3(4k^{2} + 4k + 1) + (2k + 1) + 14$$

$$= 12k^{2} + 12k + 3 + 2k + 1 + 14$$

$$= 12k^{2} + 14k + 18$$

$$= 2(6k^{2} + 7k + 9)$$

Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if *n* is odd.

Since in both cases $3n^2 + n + 14$ is even, it follows that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

- Formal Description
 - Definition
 - Categories
- 2 Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

The Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(k) is true, then P(k+1) is true.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some $k \ge 0$. Then $0 + 1 + 2 + \cdots + k = k(k+1)/2$.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some $k \ge 0$. Then $0 + 1 + 2 + \cdots + k = k(k+1)/2$.

Proof of Induction Step. Now let us prove that P(k + 1) is true.

$$0+1+2+\cdots+k+(k+1) = k(k+1)/2+(k+1)$$

$$= (k+1)(k/2+1)$$

$$= (k+1)(k+2)/2$$

- Formal Description
 - Definition
 - Categories
- 2 Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

The Minimal Counterexample Principle

Example: Prove $\forall n \in \mathbb{N}, 5^n - 2^n$ is divisible by 3.

The Minimal Counterexample Principle

Example: Prove $\forall n \in \mathbb{N}, 5^n - 2^n$ is divisible by 3.

Proof: If $P(n) = 5^n - 2^n$ is not true for every $n \ge 0$, then there are values of n for which P(n) is false, and there must be a smallest such value, say n = k.

Since $P(0) = 5^0 - 2^0 = 0$, which is divisible by 3, we have $k \ge 1$, and $k - 1 \ge 0$.

Since k is the smallest value for which P(k) false, P(k-1) is true. Thus $5^{k-1} - 2^{k-1}$ is a multiple of 3, say 3j.

The Minimal Counterexample Principle (Cont.)

However, we have

$$5^{k} - 2^{k} = 5 \times 5^{k-1} - 2 \times 2^{k-1}$$

$$= 5 \times (5^{k-1} - 2^{k-1}) + 3 \times 2^{k-1}$$

$$= 5 \times 3j + 3 \times 2^{k-1}$$

This expression is divisible by 3. We have derived a contradiction, which allows us to conclude that our original assumption is false.

Outline

- Formal Description
 - Definition
 - Categories
- Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Proof of induction step. Let's prove P(k + 1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, then we should prove that $k+1 = r \times s$, where r and s are positive integers greater than 1 and less than k+1.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Proof of induction step. Let's prove P(k+1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, then we should prove that $k+1 = r \times s$, where r and s are positive integers greater than 1 and less than k+1.

However, from P(k) we know nothing about r and $s \longrightarrow ???$

The Strong Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(n) is true for every n satisfying $n_0 \le n \le k$, then P(k+1) is true.

Also called the principle of complete induction, or course-of-values induction.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k + 1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, by definition of a prime, $k+1 = r \times s$, where r and s are positive integers greater than 1 and less than k+1.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k + 1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, by definition of a prime, $k+1 = r \times s$, where r and s are positive integers greater than 1 and less than k+1.

It follows that $2 \le r \le k$ and $2 \le s \le k$. Thus by induction hypothesis, both r and s are either prime or the product of two or more primes. Then their product k+1 is the product of two or more primes. P(k+1) is true.

Outline

- Formal Description
 - Definition
 - Categories
- Proof Techniques
 - Proof by Construction
 - Proof by Contrapositive
 - Proof by Cases
- Proof by Induction
 - Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction
 - Peano Axioms

Giuseppe Peano (1858-1932)

- In 1889, Peano published the first set of axioms.
- Build a rigorous system of arithmetic, number theory, and algebra.
- A simple but solid foundation to construct the edifice of modern mathematics.
- The fifth axiom deserves special comment. It is the first formal statement of what we now call the "induction axiom" or "the principle of mathematical induction".

Peano Five Axioms

- Axiom 1. 0 is a number.
- Axiom 2. The successor of any number is a number.
- Axiom 3. If a and b are numbers and if their successors are equal, then a and b are equal.
- Axiom 4. 0 is not the successor of any number.
- Axiom 5. If S is a set of numbers containing 0 and if the successor of any number in S is also in S, then S contains all the numbers.

Peano Axioms vs Theorem of Mathematical Induction

Let S(n) be a statement about $n \in \mathbb{N}$. Suppose

- \circ S(1) is true, and
- $\circled{S}(t+1)$ is true whenever S(t) is true for $t \geq 1$.

Then S(n) is true for all $n \in \mathbb{N}$.

Peano Axioms vs Theorem of Mathematical Induction

Let S(n) be a statement about $n \in \mathbb{N}$. Suppose

- \circ S(1) is true, and
- ② S(t+1) is true whenever S(t) is true for $t \ge 1$.

Then S(n) is true for all $n \in \mathbb{N}$.

Can use contradiction and Peano Axiom to prove the correctness of S(n).