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What is proof?

A proof of a statement is essentially a convincing argument that the
statement is true. A typical step in a proof is to derive statements from

assumptions or hypotheses.

statements that have already been derived.

other generally accepted facts, using general principles of logical
reasoning.
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Types of Proof

Proof by Construction
Proof by Contrapositive

- Proof by Contradiction
- Proof by Counterexample

Proof by Cases
Proof by Mathematical Induction

- The Principle of Mathematical Induction
- Minimal Counterexample Principle
- The Strong Principle of Mathematical Induction
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Proof by Construction (∀x, P(x) holds)

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that
a = 2x + 1, b = 2y + 1. We wish to show that there is an integer z so
that ab = 2z + 1. Let us therefore consider ab.

ab = (2x + 1)(2y + 1)

= 4xy + 2x + 2y + 1

= 2(2xy + x + y) + 1

Thus if we let z = 2xy + x + y, then ab = 2z + 1, which implies that
ab is odd. 2
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Proof by Contrapositive (p→ q⇔ ¬q→ ¬p)

Example: ∀i, j, n ∈ N, if i× j = n, then either i ≤
√

n or j ≤
√

n.

Proof: We change this statement by its logically equivalence:
∀i, j, n ∈ N, if it is not the case that i ≤

√
n or j ≤

√
n, then i× j 6= n.

If it is not true that i ≤
√

n or j ≤
√

n, then i >
√

n and j >
√

n.

Since j >
√

n ≥ 0, we have

i >
√

n⇒ i× j >
√

n× j >
√

n×
√

n = n.

It follows that i× j 6= n. The original statement is true. 2
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Proof by Contradiction (p is true⇔¬p→ false is true)

Example: For any sets A, B, and C, if A ∩ B = ∅ and C ⊆ B, then
A ∩ C = ∅.

Proof: Assume A ∩ B = ∅, C ⊆ B, and A ∩ C 6= ∅.

Then there exists x with x ∈ A ∩ C, so that x ∈ A and x ∈ C.

Since C ⊆ B and x ∈ C, it follows that x ∈ B.

Therefore x ∈ A ∩ B, which contradicts the assumption that
A ∩ B = ∅. 2
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Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if n ∈ N, then 3n2 + n + 14 is even.

Proof: Let n ∈ N. We can consider two cases: n is even and n is odd.

Case 1. n is even. Let n = 2k, where k ∈ N. Then

3n2 + n + 14 = 3(2k)2 + 2k + 14

= 12k2 + 2k + 14

= 2(6k2 + k + 7)

Since 6k2 + k + 7 is an integer, 3n2 + n + 14 is even if n is even.
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Proof by Cases (Cont.)

Case 2. n is odd. Let n = 2k + 1, where k ∈ N. Then

3n2 + n + 14 = 3(2k + 1)2 + (2k + 1) + 14

= 3(4k2 + 4k + 1) + (2k + 1) + 14

= 12k2 + 12k + 3 + 2k + 1 + 14

= 12k2 + 14k + 18

= 2(6k2 + 7k + 9)

Since 6k2 + 7k + 9 is an integer, 3n2 + n + 14 is even if n is odd.

Since in both cases 3n2 + n + 14 is even, it follows that if n ∈ N, then
3n2 + n + 14 is even. 2
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The Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that
P(n) is true for every n ≥ n0, it is sufficient to show these two things:

P(n0) is true.

For any k ≥ n0, if P(k) is true, then P(k + 1) is true.
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An Example for Mathematical Induction

Example: Let P(n) be the statement
∑n

i=0 i = n(n + 1)/2. Prove that
P(n) is true for every n ≥ 0.

Proof: We prove P(n) is true for n ≥ 0 by induction.

Basis step. P(0) is 0 = 0(0 + 1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some k ≥ 0. Then
0 + 1 + 2 + · · ·+ k = k(k + 1)/2.

Proof of Induction Step. Now let us prove that P(k + 1) is true.

0 + 1 + 2 + · · ·+ k + (k + 1) = k(k + 1)/2 + (k + 1)

= (k + 1)(k/2 + 1)

= (k + 1)(k + 2)/2 2
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The Minimal Counterexample Principle

Example: Prove ∀n ∈ N, 5n − 2n is divisible by 3.

Proof: If P(n) = 5n − 2n is not true for every n ≥ 0, then there are
values of n for which P(n) is false, and there must be a smallest such
value, say n = k.

Since P(0) = 50 − 20 = 0, which is divisible by 3, we have k ≥ 1,
and k − 1 ≥ 0.

Since k is the smallest value for which P(k) false, P(k − 1) is true.
Thus 5k−1 − 2k−1 is a multiple of 3, say 3j.
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The Minimal Counterexample Principle (Cont.)

However, we have

5k − 2k = 5× 5k−1 − 2× 2k−1

= 5× (5k−1 − 2k−1) + 3× 2k−1

= 5× 3j + 3× 2k−1

This expression is divisible by 3. We have derived a contradiction,
which allows us to conclude that our original assumption is false. 2
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An Example for the Weakness of Mathematical Induction

Example: Prove that ∀n ∈ N with n ≥ 2, it has prime factorizations.

Proof: Define P(n) be the statement that “n is either prime or the
product of two or more primes”. We will try to prove that P(n) is true
for every n ≥ 2.

Basis step. P(2) is true, since 2 is a prime. X

Induction hypothesis. P(k) for k ≥ 2. (as usual process)

Proof of induction step. Let’s prove P(k + 1).

If P(k + 1) is prime, X
If P(k + 1) is not a prime, then we should prove that k + 1 = r × s,
where r and s are positive integers greater than 1 and less than k + 1.

However, from P(k) we know nothing about r and s −→ ???
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The Strong Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that
P(n) is true for every n ≥ n0, it is sufficient to show these two things:

P(n0) is true.

For any k ≥ n0, if P(n) is true for every n satisfying n0 ≤ n ≤ k,
then P(k + 1) is true.

Also called the principle of complete induction, or course-of-values
induction.
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To Complete the Example

Example: Prove that ∀n ∈ N with n ≥ 2, it has prime factorizations.

Continue the Proof:
Induction hypothesis. For k ≥ 2 and 2 ≤ n ≤ k, P(n) is true. (Strong
Principle)

Proof of induction step. Let’s prove P(k + 1).

If P(k + 1) is prime, X
If P(k + 1) is not a prime, by definition of a prime, k + 1 = r × s,
where r and s are positive integers greater than 1 and less than k + 1.

It follows that 2 ≤ r ≤ k and 2 ≤ s ≤ k. Thus by induction
hypothesis, both r and s are either prime or the product of two or more
primes. Then their product k + 1 is the product of two or more
primes. P(k + 1) is true.
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Giuseppe Peano (1858-1932)

In 1889, Peano published the first set of axioms.

Build a rigorous system of arithmetic, number theory, and
algebra.

A simple but solid foundation to construct the edifice of modern
mathematics.

The fifth axiom deserves special comment. It is the first formal
statement of what we now call the “induction axiom" or “the
principle of mathematical induction".
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Peano Five Axioms

Axiom 1. 0 is a number.

Axiom 2. The successor of any number is a number.

Axiom 3. If a and b are numbers and if their successors are
equal, then a and b are equal.

Axiom 4. 0 is not the successor of any number.

Axiom 5. If S is a set of numbers containing 0 and if the
successor of any number in S is also in S, then S contains all the
numbers.

CS101-Introduction To Computer Science@SJTU Xiaofeng Gao Slide04-Proof 27/28



Formal Description
Proof Techniques

Proof by Induction

Mathematical Induction
Minimal Counterexample Principle
The Strong Principle of Mathematical Induction
Peano Axioms

Peano Axioms vs Theorem of Mathematical Induction

Let S(n) be a statement about n ∈ N. Suppose

1 S(1) is true, and
2 S(t + 1) is true whenever S(t) is true for t ≥ 1.

Then S(n) is true for all n ∈ N.

Can use contradiction and Peano Axiom to prove the correctness of
S(n).
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