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This Lecture is about  
Mathematical Models of Computation.
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Why Should I Care?

 - Ways of thinking.

 - Theory can drive practice.

 - Don’t be an Instrumentalist.



Automata and Languages: 
finite automata, regular languages, pushdown automata, context-free 
languages, pumping lemmas.

Computability Theory:  
Turing Machines, decidability, reducibility, the arithmetic hierarchy,  
the recursion theorem, the Post correspondence problem.

Complexity Theory and Applications: 
time complexity, classes P and NP, NP-completeness, space complexity 
PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized 
complexity, classes RP and BPP. 
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Mathematical Models of Computation
(predated computers as we know them)

(1940’s)

(1930-40’s)

(1960-70’s)
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Let me emphasize Proofs a bit more.

A good proof: 1. Correct 
2. Easy to understand
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Suppose                           with                 .

True or False:  
There are always two numbers in     such that  

one divides the other.  

✔
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LEVEL 1
HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes 
then at least one hole will have 

more than one pigeon
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LEVEL 1
HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes 
then at least one hole will have 

more than one pigeon

HINT 2:
Every integer     can be written 
as                , where       is an 

odd number
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LEVEL 2

Proof Idea:

Given:                              with                 .

Show:    There is an integer      and     
                 such that             
and                .
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LEVEL 3
Proof:

Write every number in A as a = 2km, where m 
is an odd number. 
How many odd numbers in {1,…,2n-1}? n

Since |A| = n+1, there must be two numbers 
in A with the same odd part.
Say a1 and a2 have the same odd part m. 
Then a1 = 2im and a2 = 2jm, so one must divide 
the other. 

Suppose                           with                 .



The second level should be a short one-
paragraph description or “KEY IDEA”
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We expect your proofs to have three levels:

(e.g. “Proof by contradiction,” “Proof by induction,” 
“Follows from the pigeonhole principle”)

The first level should be a one-word or 
one-phrase “HINT” of the proof

The third level should be the FULL PROOF
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Double standards :-)

HINT + KEY IDEA (+ FULL PROOF)
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Deterministic Finite Automata  
(DFA)
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An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of 
elements of Σ

For x a string, |x| is the length of x

The unique string of length 0 will be denoted 
by ε and will be called the empty or null string

NOTATION

A language over Σ is a set of strings over Σ, 
ie, a subset of Σ* 

Σ* denotes the set of finite length sequences 
of elements of Σ 
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Input (String) -> -> Output (Yes/No)

finite # of  
internal states

Divice

Finite Automata 
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A Deterministic Finite Automata 

0
0,1

00

1

1

1

0111 111

11

1

Read string left to right

 

The machine accepts a string if the process ends in a double circle.
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0
0,1

00

1

1

1

0111 1 

The machine accepts a string if the process ends in a double circle.

q0

q1

q2

q3

states

states

A Deterministic Finite Automata 
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0
0,1

00

1

1

1

0111 1 

The machine accepts a string if the process ends in a double circle.

q0

q1

q2

q3

states

states

start state (q0) 

final states (F)

A Deterministic Finite Automata 
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A Deterministic Finite Automata 
is represented by a 5-tuple M = (Q, Σ, δ, q0, F) :

Q is the set of states (finite)
Σ is the alphabet (finite)

δ : Q × Σ → Q  is the transition function
q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

 Let w1, ... , wn ∈ Σ and  w = w1... wn ∈ Σ*  
 Then M accepts w if there are r0, r1, ..., rn ∈ Q, s.t. 
• r0=q0  

• δ(ri, wi+1 ) = ri+1,   for i = 0, ..., n-1, and  
• rn ∈ F
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A Deterministic Finite Automata 
is represented by a 5-tuple M = (Q, Σ, δ, q0, F) :

Q is the set of states (finite)
Σ is the alphabet (finite)

δ : Q × Σ → Q  is the transition function
q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

 L(M) = the language of machine M 
   = set of all strings machine M accepts
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0,1q0

L(M) ={0,1}*

Warming-up
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L(M) ={0,1}*

Warming-up
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L(M) = { w | w has an even number of 1s}

Warming-up
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q0 q1

0 0

1

1

L(M) = { w | w has an even number of 1s}

Warming-up
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Build an automaton that accepts all and only 
those strings that contain 001

Warming-up
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Build an automaton that accepts all and only 
those strings that contain 001

q q00

1 0

1
q0 q001

0 0 1

0,1

Warming-up
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Regular Language

A language L is regular if it is recognized by a 
deterministic finite automaton (DFA),  

i.e. if there is a DFA M such that L = L (M).

L = { w | w contains 001} is regular

L = { w | w has an even number of 1’s} is regular
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UNION THEOREM

Given two languages, L1 and L2, define 
the union of L1 and L2 as  

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 } 

Theorem:  
The union of two regular languages  

is also a regular language.
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Theorem:  
The union of two regular languages  

is also a regular language.

Proof:  Let  
M1 = (Q1, Σ, δ1, q0, F1)  be finite automaton for L1 

and  
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton  
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2 

1

2
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Theorem:  
The union of two regular languages  

is also a regular language.

Idea: Run both M1 and M2 at the same time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }
= Q1 × Q2

q0 = (q0, q0)
1 2

F = { (q1, q2) | q1 ∈ F1 or q2 ∈ F2 }

δ( (q1,q2), σ) = (δ1(q1, σ), δ2(q2, σ)) 
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Theorem:  
The union of two regular languages  

is also a regular language.

q0 q1

0 0

1

1

p0 p1

1
1

0

0

M1 =

M2 =
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Theorem:  
The union of two regular languages  

is also a regular language.

q0,p0 q1,p0
1

1

q0,p1 q1,p1
1

1

00
00M =
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INTERSECTION THEOREM

Given two languages, L1 and L2, define 
the intersection of L1 and L2 as  

L1 ∩ L2 = { w | w ∈ L1 and w ∈ L2 } 

Theorem:  
The intersection of two regular languages  

is also a regular language.
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COMPLEMENT THEOREM

Given language L,  define the 
complement of L as  

¬L= { w ∈ Σ* | w ∉ L }

Theorem:  
The complement of a regular languages  

is also a regular language.
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THE REGULAR OPERATIONS

Union: L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 } 

Intersection: L1 ∩ L2 = { w | w ∈ L1 and w ∈ L2 } 

Negation: ¬ L = { w ∈ Σ* | w ∉ L } 

Reverse: LR = { w1 …wk | wk …w1 ∈ L }

Concatenation: L1 ⋅ L2 = { vw | v ∈ L1 and w ∈ L2 }

Star: L* = { w1 …wk | k ≥ 0 and each wi ∈ L }
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REVERSE THEOREM

Given language L,  define the  
reverse of LR as  

LR = { w1 …wk | wk …w1 ∈ L }

Theorem:  
The reverse of a regular languages  

is also a regular language.
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Theorem:  
The reverse of a regular languages  

is also a regular language.

Proof:  Let  
M = (Q, Σ, δ, q0, F) that recognizes L. 
If M accepts w then w describes a directed path in 
M from start to an accept state 

We want to construct a finite automaton  
MR as M with the arrows reversed.

…
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MR IS NOT ALWAYS A DFA!
- It may have many start states

- Some states may have too 
many outgoing edges, or none
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MR IS NOT ALWAYS A DFA!

1
0

1

0 1

0,1

0
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MR IS NOT ALWAYS A DFA!

1
0

1

0 1

0,1

0
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Non-Determinism

1
0

1

0 1

0,1

0

We will say that the machine accepts if there is 
some way to make it reach an accept state
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Example

At each state, possibly zero, one or many out 
arrows for each σ ∈ Σ or with label ε

0,1

0,ε 0

0,1
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Example

Possibly many start states

1

ε 0

0,1
1

0



1

0

0
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Example

L(M)={1,00}
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A Non-Deterministic Finite Automata (NFA) 
is represented by a 5-tuple N = (Q, Σ, δ, Q0, F) :

Q is the set of states (finite)
Σ is the alphabet (finite)

δ : Q × Σ ∪ {ε} → 2Q  is the transition function
Q0 ⊆ Q is the set of start state

F ⊆ Q is the set of accept states

 Let w1, ... , wn ∈ Σ ∪ {ε} and  w = w1... wn ∈ Σε*  
 Then N accepts w if there are r0, r1, ..., rn ∈ Q, s.t. 
• r0=Q0  

• ri+1∈ δ(ri, wi+1 ),   for i = 0, ..., n-1, and  
• rn ∈ F
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A Non-Deterministic Finite Automata (NFA) 
is represented by a 5-tuple N = (Q, Σ, δ, Q0, F) :

Q is the set of states (finite)
Σ is the alphabet (finite)

δ : Q × Σ ∪ {ε} → 2Q  is the transition function
Q0 ⊆ Q is the set of start state

F ⊆ Q is the set of accept states

 L(N) = the language of machine N 
   = set of all strings machine N accepts
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Deterministic 
Computation

Non-Deterministic 
Computation

accept or reject accept

reject
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NFAs ARE SIMPLER THAN DFAs

An NFA that recognizes the language {1}:

1

1 0,1

0,1
0

A DFA that recognizes 
the language {1}:
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Theorem: Every NFA has an equivalent DFA

Corollary: A language is regular iff it is 
recognized by an NFA

Corollary: L is regular iff LR is regular

N is equivalent to M if L(N) = L (M)

FROM NFA TO DFA
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Input: N = (Q, Σ, δ, Q0, F) 

Output: M = (Q′, Σ, δ′, q0′, F′) 

accept

reject

Q′ = 2Q

To learn if NFA accepts, we could 
do the computation in parallel, 
maintaining the set of states where 
all threads are.

Idea:

FROM NFA TO DFA
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Input: N = (Q, Σ, δ, Q0, F) 

Output: M = (Q′, Σ, δ′, q0′, F′) 

Q′ = 2Q

δ′(R,σ) =  ∪ ε( δ(r,σ) ), r ∈ R
q0′ = ε(Q0)

F′ = { R ∈ Q′ | f ∈ R for some f ∈ F }

δ′ : Q′ × Σ → Q′

  For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be 
reached from some r ∈ R by traveling along zero or more ε 
arrows}, 

ε
ε

ε

FROM NFA TO DFA
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(01)+∪ (010)+

FROM NFA TO DFA
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Regular Languages Closure Under 
Concatenation

 DFA1 -> DFA2    

NFA

Given DFAs M1 and M2, construct NFA by 

connecting all accept states in M1 to start 

states in M2 .
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Regular Languages Closure Under  
Star

Let L be a regular language and M be a DFA for L

We construct an NFA N that recognizes L*

0 0,1

00

1

1

1

ε

ε

ε
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THE REGULAR OPERATIONS

Union: L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 } 

Intersection: L1 ∩ L2 = { w | w ∈ L1 and w ∈ L2 } 

Negation: ¬ L = { w ∈ Σ* | w ∉ L } 

Reverse: LR = { w1 …wk | wk …w1 ∈ L }

Concatenation: L1 ⋅ L2 = { vw | v ∈ L1 and w ∈ L2 }

Star: L* = { w1 …wk | k ≥ 0 and each wi ∈ L }
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Are all languages regular?
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Consider the language L = { 0n1n | n > 0 }

No finite automaton accepts this language.

Can you prove this?
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“0n1n is not regular. No machine has enough states to 
keep track of the number of 0’s it might encounter”

Idea?
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That is a fairly weak argument  

Consider the following example…
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L  = { w | w has equal number of occurrences 
of 01 and 10}

No machine has enough states to keep track of the 
number of 01’s it might encounter.

1

1
0

1

0

0

0

1
0

1
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THE PUMPING LEMMA
Let L be a regular language with |L| = ∞

Then there exists a positive integer P such that 

Any x ∈ L,|x| ≥ P  can be written as

x = uvw
1. |v| > 0 
2. |uv| ≤ P 
3. uviw ∈ L for any i ≥ 0

where:
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THE PUMPING LEMMA

1. |v| > 0 
2. |uv| ≤ P 
3. uviw ∈ L for any i ≥ 0

where:

Let P be the number of states in M
Assume x ∈ L is such that |x| ≥ P 

We show x = uvw

q0 qi qj q|x|

…
u v w

PIGEONHOLE: There must be j > i such that qi = qj
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THE PUMPING LEMMA

1. |v| > 0 
2. |uv| ≤ P 
3. uviw ∈ L for any i ≥ 0

where:

Let P be the number of states in M
Assume x ∈ L is such that |x| ≥ P 

We show x = uvw

q0 qi qj q|x|

…
u v w

PIGEONHOLE: There must be j > i such that qi = qj
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THE PUMPING LEMMA

q0 qi qj q|x|

…
u v w

L = { 0n1n | n > 0 }

HINT: Assume L is regular, and try pumping.
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THE PUMPING LEMMA

q0 qi qj q|x|

…
u v w

L = { 0n1n | n > 0 }

HINT: Assume L is regular, and try pumping.
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