## Automata Theory

Lecture on Discussion Course of CS120

#### This Lecture is about Mathematical Models of Computation.

#### Why Should I Care?

- Ways of thinking.

- Theory can drive practice.
- Don't be an **Instrumentalist**.

### Mathematical Models of Computation

(predated computers as we know them)

#### Automata and Languages: (1940's)

finite automata, regular languages, pushdown automata, context-free languages, pumping lemmas.

#### 2 Computability Theory: (1930-40's) Turing Machines, decidability, reducibility, the arithmetic hierarchy, the recursion theorem, the Post correspondence problem.

#### **Complexity Theory and Applications:** (1960-70's) time complexity, classes P and NP, NP-completeness, space complexity PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized complexity, classes RP and BPP.





#### Let me emphasize **Proofs** a bit more.

#### A good proof: 1. Correct 2. Easy to understand

#### Suppose $A \subseteq \{1, 2, ..., 2n\}$ with |A| = n + 1.

#### $\checkmark$ True or False:

## There are always two numbers in A such that one divides the other.



### **HINT 1:**

#### THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes then at least one hole will have more than one pigeon





### **HINT 1:**

#### THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes then at least one hole will have more than one pigeon





### **HINT 1:**

#### THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes then at least one hole will have more than one pigeon

### **HINT 2:**

Every integer a can be written as  $a = 2^k m$ , where m is an odd number



### **Proof Idea:**

Given: 
$$A \subseteq \{1, 2, ..., 2n\}$$
 with  $|A| = n + 1$ .

Show: There is an integer m and  $a_1 \neq a_2 \in A$  such that  $a_1 = 2^i m$ and  $a_2 = 2^j m$ .

### LEVEL 3

### **Proof:**

Suppose  $A \subseteq \{1, 2, ..., 2n\}$  with |A| = n + 1.

Write every number in *A* as  $a = 2^k m$ , where *m* is an odd number.

How many odd numbers in  $\{1, \dots, 2n-1\}$ ? *n* 

Since |A| = n+1, there must be two numbers in *A* with the same odd part.

Say  $a_1$  and  $a_2$  have the same odd part m. Then  $a_1 = 2^i m$  and  $a_2 = 2^j m$ , so one must divide the other. We expect your proofs to have three levels:

## The first level should be a one-word or one-phrase "HINT" of the proof

(e.g. "Proof by contradiction," "Proof by induction,""Follows from the pigeonhole principle")

The second level should be a short oneparagraph description or "KEY IDEA"

The third level should be the FULL PROOF

### Double standards :-)

HINT + KEY IDEA (+ FULL PROOF)

### Deterministic Finite Automata (DFA)

#### NOTATION

An alphabet  $\Sigma$  is a finite set (e.g.,  $\Sigma = \{0,1\}$ )

A string over  $\Sigma$  is a finite-length sequence of elements of  $\Sigma$ 

 $\Sigma^*$  denotes the set of finite length sequences of elements of  $\Sigma$ 

For x a string,  $|\mathbf{x}|$  is the length of x

The unique string of length 0 will be denoted by  $\epsilon$  and will be called the empty or null string

A language over  $\Sigma$  is a set of strings over  $\Sigma$ , ie, a subset of  $\Sigma^*$ 

### Finite Automata





The machine accepts a string if the process ends in a double circle.



The machine accepts a string if the process ends in a double circle.



The machine accepts a string if the process ends in a double circle.

is represented by a 5-tuple  $M = (Q, \Sigma, \delta, q_0, F)$ :

**Q** is the set of states (finite)

 $\Sigma$  is the alphabet (finite)

 $\delta: \mathbf{Q} \times \boldsymbol{\Sigma} \rightarrow \mathbf{Q}$  is the transition function

 $q_0 \in \mathbf{Q}$  is the start state

 $F \subseteq Q$  is the set of accept states

Let  $w_1, ..., w_n \in \Sigma$  and  $w = w_1 ... w_n \in \Sigma^*$ Then M <u>accepts</u> w if there are  $r_0, r_1, ..., r_n \in Q$ , s.t. •  $r_0 = q_0$ •  $\delta(r_i, w_{i+1}) = r_{i+1}$ , for i = 0, ..., n-1, and •  $r_n \in \mathbf{F}$ 

is represented by a 5-tuple  $M = (Q, \Sigma, \delta, q_0, F)$ :

Q is the set of states (finite)

 $\Sigma$  is the alphabet (finite)

 $\delta : \mathbf{Q} \times \boldsymbol{\Sigma} \rightarrow \mathbf{Q}$  is the transition function

 $q_0 \in \mathbf{Q}$  is the start state

 $F \subseteq Q$  is the set of accept states

L(M) = the language of machine M = set of all strings machine M accepts





$$L(M) = \{0,1\}^*$$

#### $L(M) = \{0,1\}^*$

#### $L(M) = \{ w \mid w \text{ has an even number of } 1s \}$



#### $L(M) = \{ w \mid w \text{ has an even number of } 1s \}$

Build an automaton that accepts all and only those strings that contain 001

Build an automaton that accepts all and only those strings that contain 001



### Regular Language

A language L is regular if it is recognized by a deterministic finite automaton (DFA),i.e. if there is a DFA M such that L = L (M).

- $L = \{ w \mid w \text{ contains } 001 \}$  is regular
- $L = \{ w \mid w \text{ has an even number of 1's} \}$  is regular

### **UNION THEOREM**

Given two languages,  $L_1$  and  $L_2$ , define the union of  $L_1$  and  $L_2$  as  $L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$ 

#### Theorem: The union of two regular languages is also a regular language.

The union of two regular languages is also a regular language.

**Proof:** Let  $M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$  be finite automaton for  $L_1$ and  $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$  be finite automaton for  $L_2$ 

We want to construct a finite automaton  $M = (Q, \Sigma, \delta, q_0, F)$  that recognizes  $L = L_1 \cup L_2$ 

The union of two regular languages is also a regular language.

**Idea**: Run both  $M_1$  and  $M_2$  at the same time!

- Q = pairs of states, one from M<sub>1</sub> and one from M<sub>2</sub> = { (q<sub>1</sub>, q<sub>2</sub>) | q<sub>1</sub>  $\in$  Q<sub>1</sub> and q<sub>2</sub>  $\in$  Q<sub>2</sub> } = Q<sub>1</sub> × Q<sub>2</sub>
  - $\begin{aligned} \mathbf{q}_{0} &= (\mathbf{q}_{0}, \mathbf{q}_{0}) \\ \mathbf{F} &= \{ (\mathbf{q}_{1}, \mathbf{q}_{2}) \mid \mathbf{q}_{1} \in \mathbf{F}_{1} \text{ or } \mathbf{q}_{2} \in \mathbf{F}_{2} \} \\ \delta( (\mathbf{q}_{1}, \mathbf{q}_{2}), \sigma) &= (\delta_{1}(\mathbf{q}_{1}, \sigma), \delta_{2}(\mathbf{q}_{2}, \sigma)) \end{aligned}$

The union of two regular languages is also a regular language.



The union of two regular languages is also a regular language.



### **INTERSECTION THEOREM**

Given two languages,  $L_1$  and  $L_2$ , define the intersection of  $L_1$  and  $L_2$  as  $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$ 

#### Theorem: The intersection of two regular languages is also a regular language.

### **COMPLEMENT** THEOREM

Given language L, define the complement of L as  $\neg L = \{ w \in \Sigma^* \mid w \notin L \}$ 

#### Theorem: The complement of a regular languages is also a regular language.

### THE REGULAR OPERATIONS

- $\bullet \text{ Union: } L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$
- $\bullet Intersection: L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- → Negation:  $\neg L = \{ w \in \Sigma^* | w \notin L \}$

Reverse:  $L^{R} = \{ w_{1} ... w_{k} | w_{k} ... w_{1} \in L \}$ 

Concatenation:  $L_1 \cdot L_2 = \{ vw \mid v \in L_1 \text{ and } w \in L_2 \}$ 

Star:  $L^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in L \}$ 

### **REVERSE** THEOREM

Given language L, define the reverse of  $L^R$  as  $L^R = \{ w_1 ... w_k \mid w_k ... w_1 \in L \}$ 

Theorem: The reverse of a regular languages is also a regular language.

The reverse of a regular languages is also a regular language.

**Proof:** Let  $M = (Q, \Sigma, \delta, q_0, F)$  that recognizes L. If M accepts w then w describes a directed path in M from start to an accept state

We want to construct a finite automaton  $M^{R}$  as M with the arrows reversed.

• • •

### M<sup>R</sup> IS NOT ALWAYS A DFA!

- It may have many start states

- Some states may have too many outgoing edges, or none

### M<sup>R</sup> IS NOT ALWAYS A DFA!



### M<sup>R</sup> IS NOT ALWAYS A DFA!



### **Non-Determinism**



#### We will say that the machine accepts if there is some way to make it reach an accept state

### Example



### At each state, possibly zero, one or many out arrows for each $\sigma \in \Sigma$ or with label $\varepsilon$

### Example



#### Possibly many start states

### Example



#### $L(M) = \{1,00\}$

A Non-Deterministic Finite Automata (NFA)

is represented by a 5-tuple  $N = (Q, \Sigma, \delta, Q_0, F)$ :

**Q** is the set of states (finite)

 $\Sigma$  is the alphabet (finite)

→  $\delta : \mathbf{Q} \times \mathbf{\Sigma} \cup \{\varepsilon\} \rightarrow 2^{\mathbf{Q}}$  is the transition function

→  $Q_0 \subseteq Q$  is the set of start state

 $F \subseteq \mathbf{Q}$  is the set of accept states

Let  $w_1, ..., w_n \in \Sigma \cup \{\epsilon\}$  and  $w = w_1..., w_n \in \Sigma_{\epsilon}^*$ Then N accepts w if there are  $r_0, r_1, ..., r_n \in Q$ , s.t. •  $r_0 = Q_0$ •  $r_{i+1} \in \delta(r_i, w_{i+1})$ , for i = 0, ..., n-1, and •  $r_n \in F$  A Non-Deterministic Finite Automata (NFA)

is represented by a 5-tuple  $N = (Q, \Sigma, \delta, Q_0, F)$ :

Q is the set of states (finite)

 $\Sigma$  is the alphabet (finite)

→  $\delta : \mathbf{Q} \times \mathbf{\Sigma} \cup \{\varepsilon\} \rightarrow 2^{\mathbf{Q}}$  is the transition function

→  $Q_0 \subseteq Q$  is the set of start state F  $\subseteq Q$  is the set of accept states

L(N) = the language of machine N = set of all strings machine N accepts



### NFAs ARE SIMPLER THAN DFAs

An NFA that recognizes the language {1}:

$$\rightarrow \bigcirc \xrightarrow{1} \bigcirc \bigcirc$$

A DFA that recognizes the language {1}: 0 0,1 $\rightarrow 0$  1 0,1 0,1

Theorem: Every NFA has an equivalent DFA N is equivalent to M if L(N) = L (M)

**Corollary**: A language is regular iff it is recognized by an NFA

**Corollary**: L is regular iff L<sup>R</sup> is regular

Input:  $N = (Q, \Sigma, \delta, Q_0, F)$ Output:  $M = (Q', \Sigma, \delta', q_0', F')$ 



To learn if NFA accepts, we could do the computation in parallel, maintaining the set of states where all threads are.

Idea:  $Q' = 2^Q$ 



 $\mathbf{F'} = \{ R \in \mathbf{Q'} \mid f \in R \text{ for some } f \in F \}$ 

For  $R \subseteq Q$ , the  $\varepsilon$ -closure of R,  $\varepsilon(R) = \{q \text{ that can be reached from some } r \in R \text{ by traveling along zero or more } \varepsilon \text{ arrows}\}$ ,

 $(01)^+ \cup (010)^+$ 

# Regular Languages Closure Under Concatenation



#### NFA

Given DFAs  $M_1$  and  $M_2$ , construct NFA by connecting all accept states in  $M_1$  to start states in  $M_2$ .

### Regular Languages Closure Under Star

Let L be a regular language and M be a DFA for L

We construct an NFA N that recognizes L\*



### THE REGULAR OPERATIONS

- $\bullet \text{ Union: } L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$
- $\bullet Intersection: L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- → Negation:  $\neg L = \{ w \in \Sigma^* | w \notin L \}$
- $\blacktriangleright \text{Reverse: } L^{R} = \{ w_{1} ... w_{k} \mid w_{k} ... w_{1} \in L \}$
- $\rightarrow$  Concatenation:  $L_1 \cdot L_2 = \{ vw \mid v \in L_1 \text{ and } w \in L_2 \}$
- → Star:  $L^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in L \}$

### Are all languages regular?

Consider the language  $L = \{ O^n 1^n | n > 0 \}$ 

No finite automaton accepts this language.

Can you prove this?

#### Idea?

"O<sup>n</sup>1<sup>n</sup> is not regular. No machine has enough states to keep track of the number of O's it might encounter"

#### That is a fairly weak argument

#### Consider the following example...

#### $L = \{ w \mid w \text{ has equal number of occurrences}$ of 01 and 10}

No machine has enough states to keep track of the number of 01's it might encounter.



### THE PUMPING LEMMA

Let L be a regular language with  $|L| = \infty$ 

Then there exists a positive integer P such that Any  $x \in L$ ,  $|x| \ge P$  can be written as

 $\mathbf{x} = \mathbf{u}\mathbf{v}\mathbf{w}$ 

where: 1.  $|\mathbf{v}| > 0$ 2.  $|\mathbf{uv}| \le P$ 3.  $\mathbf{uv}^{i}\mathbf{w} \in L$  for any  $i \ge 0$ 

THE PUMPING LEMMA Assume  $x \in L$  is such that  $|x| \geq P$ Let P be the number of states in M We show x = uvwwhere: 1. |v| > 02.  $|\mathbf{u}\mathbf{v}| \leq \mathbf{P}$ 3.  $uv^i w \in L$  for any  $i \ge 0$ 

PIGEONHOLE: There must be j > i such that  $q_i = q_j$ 



THE PUMPING LEMMA Assume  $x \in L$  is such that  $|x| \geq P$ Let P be the number of states in M We show x = uvwwhere: 1. |v| > 02.  $|\mathbf{u}\mathbf{v}| \leq \mathbf{P}$ 3.  $uv^i w \in L$  for any  $i \ge 0$ 

PIGEONHOLE: There must be j > i such that  $q_i = q_j$ 



#### THE PUMPING LEMMA

 $L = \{ 0^n 1^n \mid n > 0 \}$ 

#### HINT: Assume L is regular, and try pumping.



#### THE PUMPING LEMMA

 $L = \{ 0^n 1^n \mid n > 0 \}$ 

#### HINT: Assume L is regular, and try pumping.



#### References:

CMU FLAC: 15-453 Formal Languages, Automata and Computation, <a href="http://www.cs.cmu.edu/~lblum/flac/schedule.html">http://www.cs.cmu.edu/~lblum/flac/schedule.html</a>, Spring 2014

Stanford CS154: Introduction to Automata and Complexity Theory, http://infolab.stanford.edu/~ullman/ialc/spr10/spr10.html, Spring 2009

John E. Hopcroft, etc., Introduction to Automata Theory, Languages, and Computation(Third Edition). Pearson; 2006