Automata Theory

Lecture on Discussion Course of CS120
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This Lecture is about
Mathematical Models of Computation.

Runzhe Yang @ SJTU ACM CLASS



Why Should I Care?

- Ways of thinking.
- Theory can drive practice.

- Don’t be an Instrumentalist.
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Mathematical Models of Computation

(predated computers as we know them)

Automata and Languages: (1940’s)

finite automata, regular languages, pushdown automata, context-free
languages, pumping lemmas.

Computability Theory: (1930-40’s)

Turing Machines, decidability, reducibility, the arithmetic hierarchy,
the recursion theorem, the Post correspondence problem.

Complexity Theory and Applications: (1960-70’s)

time complexity, classes P and NP, NP-completeness, space complexity
PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized
complexity, classes RP and BPP.
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Automata Theory,
Languages, and
Computation

3rd Edition
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Let me emphasize Proofs a bit more.

1. Correct

A good f:
§OOC PIOOL . Easy to understand
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Suppose A C {1,2,...,2n} with |[A|=n+1.

v True or False:
There are always two numbers in A such that
one divides the other.
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LEVEL 1
HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes
then at least one hole will have
more than one pigeon
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LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes
then at least one hole will have
more than one pigeon

HINT 2:

Every integer a can be written
as g = 2m , where m is an
odd number
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LEVEL 2

Proof Idea:
Given: AC{1,2,...,2n} with |[A|=n+1.
Show: There is an integer m and

a1 # ay € A such thata, = 2'm
and a» = 2m .
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LEVEL 3

Proof:
Suppose A C {1,2,...,2n} with |[A|=n+1.

Write every number in A as a = 2*m, where m
is an odd number.

How many odd numbers in {1,...,2n-1}? n

Since |A| = n+1, there must be two numbers
in A with the same odd part.

Say a, and a, have the same odd part m.
Then a, = 2'm and a, = 2/m, so one must divide
the other.
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We expect your proofs to have three levels:

The first level should be a one-word or
one-phrase “HINT” of the proof

»

(e.g. “Proof by contradiction,” “Proof by induction,”
“Follows from the pigeonhole principle”)

The second level should be a short one-
paragraph description or “KEY [DEA”

The third level should be the FULL PROOF
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Double standards :-)

HINT + KEY IDEA (+ FULL PROOF)
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Deterministic Finite Automata
(DFA)
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NOTATION

An alphabet X is a finite set (e.g., £ = {0,1})

A string over X is a finite-length sequence of
elements of X

>* denotes the set of finite length sequences
of elements of X

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by € and will be called the empty or null string

A language over X is a set of strings over X,
ie, a subset of X*
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Finite Automata

finite # of
internal states

Input (String) -> - -> QOutput (Yes/No)

Divice
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A Deterministic Finite Automata

m / 3 m
0111 /™ @
\ O
1
Read string left to right O

The machine accepts a string if the process ends in a double circle.
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A Deterministic Finite Automata

The machine accepts a string if the process ends in a double circle.
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A Deterministic Finite Automata

final states (F)

/ »
start state (9o) — —states

The machine accepts a string if the process ends in a double circle.
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A Deterministic Finite Automata

is represented by a 5-tuple M = (Q, %, o, q,, F) :

Q is the set of states (finite)

> is the alphabet (finite)
:Q X X — Q 1isthe

qo € Q is the start state

F C Q is the set of accept states

——

r

S s ————

-]

2w, EXand w=w,.w_EX* H
|
fori =0, ..., n-1, and H

_ 1

Let w,, ..
Then M accepts w if there arer,, ry, ..., 1, € Q, s.t.

— ———
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A Deterministic Finite Automata

is represented by a 5-tuple M = (Q, %, o, q,, F) :

Q is the set of states (finite)

> is the alphabet (finite)
:Q X X — Q 1isthe

qo € Q is the start state

F C Q is the set of accept states

L(M) = the language of machine M
= set of all strings machine M accepts

S ———— —— — e ——— —— S ——————— - S ————— R ———e —
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Warming-up

L(M) ={0,1}"
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Warming-up

L(M) ={0,1}"
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Warming-up

L(M) = {w | w has an even number of 1s}

Runzhe Yang @ SJTU ACM CLASS



Warming-up

0 0
1
- ()=
1

L(M) = { w | w has an even number of 1s}
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Warming-up

Build an automaton that accepts all and only
those strings that contain 001
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Warming-up

Build an automaton that accepts all and only
those strings that contain 001

1 0

0,1
0
1
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Regular Language

A language L is regular if it is recognized by a

| deterministic finite automaton (DFA), g

Li.e. if there is a DFA M such that L = L (M).

d

L = { w | w contains 001} is regular

L = { w | w has an even number of 1’s} is regular
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UNION THEOREM

Given two languages, L, and L,, define
the union of L, and L, as

LLUL,={w|w&L orweElL,}

Theorem:

The union of two regular languages
is also a regular language.
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Theorem:

The union of two regular languages
is also a regular language.

Proof: Let
1
M, = (Q,, %, 0,, q, F,) be finite automaton for L,

and
M, = (Q,, %, d,, q?), F,) be finite automaton for L,

We want to construct a finite automaton
M= (Q, %, o, q,, F) that recognizesL =L, UL,
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Theorem:

The union of two regular languages
is also a regular language.

Idea: Run both M, and M, at the same time!

Q = pairs of states, one from M, and one from M,

={,9) |9, €Qand q,€Q, }
=Q; X Q,

do = (9o 99)
F={(yq) |qEForqEF,}
6( (qpqz)’ 0) = (61((11, O), 62(q2’ O))
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Theorem:

The union of two regular languages
is also a regular language.

(O\ 0
A
— () =)
1
1
M, = m
0
—()=
0
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Theorem:

The union of two regular languages
is also a regular language.
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INTERSECTION THEOREM

Given two languages, L, and L,, define
the intersection of L, and L, as

LNL,={w|w&EL,andw€EL,}

Theorem:

The intersection of two regular languages
is also a regular language.
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COMPLEMENT THEOREM

Given language L, define the
complement of L as

-L={we&eX* | we&L}

Theorem:

The complement of a regular languages
is also a regular language.
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THE REGULAR OPERATIONS

Union: L, UL, ={w |w€&E€L,orweElL,}
Intersection: L, "L, ={w |w&EL,andw€EL,}
Negation: ~L={we&X* | w&L}

Reverse: LR = {w;...w | wi....w; EL}
Concatenation: L, -L, = {vw | vEL,andw€E€L, }

Star: L* = {w;...w; | k =2 0and eachw, €L }
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REVERSE THEOREM

Given language L, define the

reverse of LR as
IR={w;..w | w...w; EL}

Theorem:

The reverse of a regular languages
is also a regular language.
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Theorem:

The reverse of a regular languages
is also a regular language.

Proof: Let
M = (Q, %, o, q,, F) that recognizes L.

If M accepts w then w describes a directed path in
M from start to an accept state

We want to construct a finite automaton
MR as M with the arrows reversed.
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MR IS NOT ALWAYS A DFA!

- It may have many start states

- Some states may have too
many outgoing edges, or none
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MR IS NOT ALWAYS A DFA!



MR IS NOT ALWAYS A DFA!



Non-Determinism

We will say that the machine accepts if there is
some way to make it reach an accept state
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Example

0,1

At each state, possibly zero, one or many out
arrows for each o € X or with label ¢
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Example

v
_.O

Possibly many start states
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Example

1

/
O
/

_.O

L(M)={1,00}
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A Non-Deterministic Finite Automata (NFA)

is represented by a 5-tuple N = (Q, %, 0, Q,, F) :

Q is the set of states (finite)
> is the alphabet (finite)
= 5:Q X X U {e} — 29 is the
— Q, € Qs the set of start state

F C Q is the set of accept states
rLet w,..,wEXZU{efand w=w,..w_EZ* |
Then N accepts w if there arer,, r;, ..., 1, € Q, s.t. H

|

« 1,=Q

e 1. ,€0(r,w,,), fori=0,..n-1,and H

_

1+1

\nef
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A Non-Deterministic Finite Automata (NFA)

is represented by a 5-tuple N = (Q, %, 0, Q,, F) :

Q is the set of states (finite)
> is the alphabet (finite)
= 0:Q X XU {e} = 29 is the
—> Q, € Q is the set of start state

F C Q is the set of accept states

L(N) = the language of machine N
= set of all strings machine N accepts

S ———— —— — e ——— —— S ——————— - S ————— R ———e —
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Deterministic
Computation

O G O e O e O e O e O e O

accept or reject

Non-Deterministic
Computation

7\
/N

O O
|
@) @)

O

O G o:>o<—o
N
/S
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NFAs ARE SIMPLER THAN DFAs

An NFA that recognizes the language {1}:

~)- @

A DFA that recognizes
the language {1}: 0
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FROM NFA TO DFA

Theorem: Every NFA has an equivalent DFA
N is equivalent to M if L(N) = L (M)

Corollary: A language is regular iff it is
recognized by an NFA

Corollary: L is regular iff LR is regular

Runzhe Yang @ SJTU ACM CLASS



FROM NFA TO DFA

Input: N = (Q, X, 6, Qp, F)
Output: M = (Q, %, &', q¢, F)

0 To learn if NFA accepts, we could
VRN .

0 0 do the computation in parallel,
O/ g\o i\AO maintaining the set of states where
I 7\ all threads are.

O ‘ I .O
v reject
N
] Idea: Q =22
O
accept
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FROM NFA TO DFA

Input: N = (Q, X, 6, Qp, F)

Output: M = (Q, %, 0, q¢, F) !

1 1 1 O

' — 9Q v VvV V .

RSN OO0 ™ ¥ i\
Q' X 2E—-=Q OOO
(R,0) = Ue(d6(r,0) ), rER

do = £(Qyp)

F={ReQ | f&RforsomefecF}

For R C Q, the e-closure of R, €(R) = {q that can be
reached from some r € R by traveling along zero or more ¢
arrowst},
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FROM NFA TO DFA

(01)TU (010)
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Regular Languages Closure Under
Concatenation

l DFA1 -> DFAZ]
NFA
Given DFAs M, and M,, construct NFA by

connecting all accept states in M, to start

states in M, .
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Regular Languages Closure Under
Star

Let L be a regular language and M be a DFA for L

We construct an NFA N that recognizes L*
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THE REGULAR OPERATIONS

= Union: L, UL, ={w|w€&E€L,orweElL,}

—> Intersection: L, "L, ={w |w€&E€L,andw€EL, }
=> Negation: ~L={weX* | we¢&L}

—> Reverse: LR = {w;...w | w...w; EL}

—» Concatenation: L, -L, = {vw | vEL,andw€E€L, }

— Star: L* = {w;...w; | k =2 0and each w;, €L }
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Are all languages regular?
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Consider the language L = { 0"1" | n > 0 }

No finite automaton accepts this language.

Can you prove this?
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Idea?

“O"1™ is not regular. No machine has enough states to
keep track of the number of 0’s it might encounter”
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That is a fairly weak argument

Consider the following example...
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L = {w | w has equal number of occurrences
of O1 and 10}

No machine has enough states to keep track of the
number of 01’s it might encounter.
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THE PUMPING LEMMA

Let L be a regular language with |L| = «

Then there exists a positive integer P such that

Any x €L, |x| = P can be written as

X = UvVwWw

where: 1. v| >0

2. |uv| =P

3. uwvw ELforanyi =0

Runzhe Yang @ SJTU ACM CLASS



THE PUMPING LEMMA

Assume x € L is such that |[x| = P
et P be the number of states in M

We show x = uvw
where: 1. |y| >0

2. |uv| =P

3. uvw & Lforanyi =0

PIGEONHOLE: There must be j > i such that q; = q

<
\4
u O O A\ w
Y

9o q; q; qx|
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THE PUMPING LEMMA

Assume x € L is such that |[x| = P
et P be the number of states in M

We show x = uvw
where: 1. |y| >0

2. |uv| =P

3. uvw & Lforanyi =0

PIGEONHOLE: There must be j > i such that q; = q

<
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THE PUMPING LEMMA

L={0"1"| n>0}

HINT: Assume L is regular, and try pumping.

|
/7 N\
u O O A\ w
N\ Y
9o q; q; qx|
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THE PUMPING LEMMA

L={0"1"| n>0}

HINT: Assume L is regular, and try pumping.

|
/7 N\
u O O A\ w
N\ Y
9o q; q; qx|
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